Is Parallel Programming Hard, And, If So,
What Can You Do About It?

Second Edition Release Candidate 3

Edited by:

Paul E. McKenney
Facebook
paulmck @kernel.org

January 18, 2021
Second Edition, Release Candidate 3

mailto:paulmck@kernel.org

ii

Legal Statement

This work represents the views of the editor and the authors and does not necessarily
represent the view of their respective employers.

Trademarks:

* IBM, z Systems, and PowerPC are trademarks or registered trademarks of Inter-
national Business Machines Corporation in the United States, other countries, or
both.

* Linux is a registered trademark of Linus Torvalds.

¢ Intel, Itanium, Intel Core, and Intel Xeon are trademarks of Intel Corporation or its
subsidiaries in the United States, other countries, or both.

* Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or
elsewhere.

e MIPS is a registered trademark of Wave, Inc. in the United States and other
countries.

* SPARC is a registered trademark of SPARC International, Inc. Products bearing
SPARC trademarks are based on an architecture developed by Sun Microsystems,
Inc.

* Other company, product, and service names may be trademarks or service marks
of such companies.

The non-source-code text and images in this document are provided under the terms
of the Creative Commons Attribution-Share Alike 3.0 United States license.! In brief,
you may use the contents of this document for any purpose, personal, commercial, or
otherwise, so long as attribution to the authors is maintained. Likewise, the document
may be modified, and derivative works and translations made available, so long as
such modifications and derivations are offered to the public on equal terms as the
non-source-code text and images in the original document.

Source code is covered by various versions of the GPL.? Some of this code is GPLv2-
only, as it derives from the Linux kernel, while other code is GPLv2-or-later. See the
comment headers of the individual source files within the CodeSamples directory in
the git archive® for the exact licenses. If you are unsure of the license for a given code
fragment, you should assume GPLv2-only.

Combined work © 2005-2021 by Paul E. McKenney. Each individual contribution is
copyright by its contributor at the time of contribution, as recorded in the git archive.

! http://creativecommons.org/licenses/by-sa/3.0/us/

2 http://www.gnu.org/licenses/gpl-2.0.html

3 git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.
git

http://creativecommons.org/licenses/by-sa/3.0/us/
http://www.gnu.org/licenses/gpl-2.0.html
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git

Contents

1 How To Use This Book 1
1.1 Roadmap e 2
1.2 Quick Quizzes 3
1.3 Alternativesto ThisBook 4
1.4 Sample SourceCode 5
1.5 Whose Book Is This? 6

2 Introduction 9
2.1 Historic Parallel Programming Difficulties 9
2.2 Parallel Programming Goals 11

22.1 Performance 12
222 Productivity 13
223 Generality 14
2.3 Alternatives to Parallel Programming 17
2.3.1 Multiple Instances of a Sequential Application 17
2.3.2 Use Existing Parallel Software 17
2.3.3 Performance Optimization 18
2.4 What Makes Parallel Programming Hard? 19
24.1 Work Partitioning 0oL, 20
24.2 Parallel AccessControl, 20
2.4.3 Resource Partitioning and Replication 21
2.4.4 Interacting With Hardware 21
245 Composite Capabilities 21
2.4.6 How Do Languages and Environments Assist With These Tasks? 22
25 Discussion 22
3 Hardware and its Habits 25
3.1 Overview . ..o e e 25
3.1.1 PipelinedCPUs 25
3.1.2 Memory References, 28
3.1.3 Atomic Operations 28
3.14 MemoryBarriers oo 30
315 CacheMisses 31
3.1.6 T/OOperations, 31
32 Overheads 32
3.2.1 Hardware System Architecture 32
322 Costsof Operations 34
3.2.3 Hardware Optimizations 36

iii

CONTENTS

3.3 Hardware Free Lunch? 38
3.3.1 3DlIntegration 39
3.3.2 Novel Materials and Processes 39
3.3.3 Light,NotElectrons 40
3.3.4 Special-Purpose Accelerators 40
3.3.5 Existing Parallel Software 41
3.4 Software Design Implications 41
Tools of the Trade 43
4.1 Scripting Languages Lo o 43
4.2 POSIX Multiprocessing o 44
4.2.1 POSIX Process Creation and Destruction 44
4.2.2 POSIX Thread Creation and Destruction 46
423 POSIXLocking. 48
424 POSIX Reader-Writer Locking 51
4.2.5 Atomic Operations (GCC Classic) 54
4.2.6 Atomic Operations (C11) 55
4277 Atomic Operations Modern GCC) 55
4.2.8 Per-Thread Variables 56
4.3 Alternatives to POSIX Operations 56
4.3.1 Organization and Initialization 56
4.3.2 Thread Creation, Destruction, and Control 57
433 Locking 59
43.4 Accessing Shared Variables 60
43.5 Atomic Operations 70
43.6 Per-CPU Variables 70
4.4 The Right Tool for the Job: How to Choose? 72
Counting 73
5.1 Why Isn’t Concurrent Counting Trivial? 74
5.2 Statistical Counters e 77
52.1 Design 77
5.2.2 Array-Based Implementation 77
5.2.3 Eventually Consistent Implementation 79
5.24 Per-Thread-Variable-Based Implementation 81
525 Discussion 82
5.3 Approximate Limit Counters 83
53.1 Design 83
5.3.2 Simple Limit Counter Implementation 84
5.3.3 Simple Limit Counter Discussion 90
5.3.4 Approximate Limit Counter Implementation 91
5.3.5 Approximate Limit Counter Discussion 91
54 ExactLimitCounters 91
5.4.1 Atomic Limit Counter Implementation 92
5.4.2 Atomic Limit Counter Discussion 96
5.4.3 Signal-Theft Limit Counter Design 97
5.4.4 Signal-Theft Limit Counter Implementation 98
5.4.5 Signal-Theft Limit Counter Discussion 103
5.4.6 Applying Exact Limit Counters 104

5.5 Parallel Counting Discussion 105

CONTENTS

5.5.1 Parallel Counting Performance
5.5.2 Parallel Counting Specializations
5.5.3 Parallel Counting Lessons

6 Partitioning and Synchronization Design

6.1 Partitioning Exercises L.
6.1.1 Dining Philosophers Problem
6.1.2 Double-Ended Queue
6.1.3 Partitioning Example Discussion
6.2 DesignCriteria
6.3 Synchronization Granularity
6.3.1 Sequential Program 0.
6.32 Codelocking
6.3.3 Datalocking
6.3.4 DataOwnership
6.3.5 Locking Granularity and Performance
6.4 Parallel Fastpath L
6.4.1 Reader/Writer Locking
6.4.2 Hierarchical Locking
6.4.3 Resource Allocator Caches
6.5 Beyond Partitioning oL oL
6.5.1 Work-Queue Parallel Maze Solver
6.5.2 Alternative Parallel Maze Solver
6.5.3 Performance ComparisonI
6.5.4 Alternative Sequential Maze Solver
6.5.5 Performance ComparisonIl
6.5.6 Future Directions and Conclusions
6.6 Partitioning, Parallelism, and Optimization.

Locking
7.1 Staying Alive
7.1.1 Deadlock
7.1.2 Livelock and Starvation
7.1.3 Unfairness
7.1.4 Inefficiency
7.2 TypesofLocks
7.2.1 Exclusive Locks,
7.2.2 Reader-Writer Locks
7.2.3 Beyond Reader-Writer Locks
7.2.4 Scoped Locking,
7.3 Locking Implementation Issues
7.3.1 Sample Exclusive-Locking Implementation Based on Atomic
Exchange
7.3.2 Other Exclusive-Locking Implementations
7.4 Lock-Based Existence Guarantees
7.5 Locking: Hero or Villain?
7.5.1 Locking For Applications: Hero!
7.5.2 Locking For Parallel Libraries: Just Another Tool
7.5.3 Locking For Parallelizing Sequential Libraries: Villain!
7.6 Summary e e

vi CONTENTS

8 Data Ownership 185
8.1 Multiple Processes 185
8.2 Partial Data Ownership and pthreads 186
8.3 Function Shipping L 187
8.4 Designated Thread 187
8.5 Privatization 188
8.6 Other Uses of Data Ownership 188

9 Deferred Processing 191
9.1 RunningExample, 191
9.2 Reference Counting, 192
9.3 Hazard Pointers 197
94 SequencelLocks 203
9.5 Read-Copy Update (RCU) 208

9.5.1 IntroductiontoRCU 209
9.5.2 RCUFundamentals 217
9.5.3 RCU Linux-Kernel API 225
954 RCUUsage it 236
955 RCURelatedWork 252
95.6 RCUEXercises 255
9.6 WhichtoChoose? 256
9.6.1 Which to Choose? (Overview) 256
9.6.2 Which to Choose? (Details) 257
9.6.3 Which to Choose? (ProductionUse) 260
9.7 What About Updates? 261

10 Data Structures 263
10.1 Motivating Application, 264
10.2 Partitionable Data Structures 264

10.2.1 Hash-Table Design 264
10.2.2 Hash-Table Implementation 265
10.2.3 Hash-Table Performance 267
10.3 Read-Mostly Data Structures 269
10.3.1 RCU-Protected Hash Table Implementation 270
10.3.2 RCU-Protected Hash Table Performance 271
10.3.3 RCU-Protected Hash Table Discussion 276
10.4 Non-Partitionable Data Structures 277
10.4.1 Resizable Hash Table Design 277
10.4.2 Resizable Hash Table Implementation 279
10.4.3 Resizable Hash Table Discussion 285
10.4.4 Other Resizable Hash Tables 287
10.5 Other Data Structures i 290
10.6 Micro-Optimization 291
10.6.1 Specialization L. 291
10.6.2 BitsandBytes 292
10.6.3 Hardware Considerations 292

10.7 Summary e 294

CONTENTS

11 Validation

11.1

11.2
11.3
11.4
11.5

11.6

11.7

11.8

Introduction
11.1.1 Where Do Bugs Come From?
11.1.2 Required Mindset

11.1.4 The Open Source Way
Tracing o
ASSEIHioNS e e
Static Analysis
CodeReview
11.5.1 Inspection i
11.5.2 Walkthroughs
11.5.3 Self-Inspection
Probability and Heisenbugs
11.6.1 Statistics for Discrete Testing
11.6.2 Abusing Statistics for Discrete Testing
11.6.3 Statistics for Continuous Testing
11.6.4 Hunting Heisenbugs
Performance Estimation,
11.7.1 Benchmarking
11.7.2 Profiling
11.7.3 Differential Profiling
11.7.4 Microbenchmarking
11.7.5 Isolation
11.7.6 Detecting Interference
Summary e e

12 Formal Verification

12.1

12.2

12.3

12.4
12.5
12.6
12.7

State-Space Search Lo
12.1.1 Promelaand Spin
12.1.2 HowtoUsePromela
12.1.3 Promela Example: Locking
12.1.4 Promela Example: QRCU
12.1.5 Promela Parable: dynticks and Preemptible RCU
12.1.6 Validating Preemptible RCU and dynticks
Special-Purpose State-Space Search
12.2.1 AnatomyofalitmusTest
12.2.2 What Does This Litmus Test Mean?
12.2.3 Running a Litmus Test
12.2.4 PPCMEM Discussion
Axiomatic Approaches oL Lo
12.3.1 Axiomatic Approaches and Locking
12.3.2 Axiomatic Approachesand RCU
SAT Solvers
Stateless Model Checkers
Summary
Choosing a ValidationPlan

vii

295
296
296
297
299
301
302
303
303
304
304
305
306
308
309
311
311
313
318
318
319
319
320
321
322
325

CONTENTS

13 Putting It All Together

13.1 Counter Conundrums
13.1.1 CountingUpdates
13.1.2 Counting Lookups

13.2 Refurbish Reference Counting
13.2.1 Implementation of Reference-Counting Categories
13.2.2 Linux Primitives Supporting Reference Counting
13.2.3 Counter Optimizations

133 RCURescues oottt i e e e e
13.3.1 RCU and Per-Thread-Variable-Based Statistical Counters . . .
13.3.2 RCU and Counters for Removable I/O Devices
13.3.3 ArrayandLength,
13.3.4 Correlated Fields

13.4 HashingHassles
13.4.1 Correlated Data Elements
13.4.2 Update-Friendly Hash-Table Traversal

14 Advanced Synchronization

14.1 AvoidingLocks
14.2 Non-Blocking Synchronization
14.2.1 Simple NBS
14.2.2 Applicability of NBS Benefits
1423 NBSDiscussion
14.3 Parallel Real-Time Computing
14.3.1 What is Real-Time Computing?
14.3.2 Who Needs Real-Time Computing?
14.3.3 Who Needs Parallel Real-Time Computing?
14.3.4 Implementing Parallel Real-Time Systems
14.3.5 Implementing Parallel Real-Time Operating Systems
14.3.6 Implementing Parallel Real-Time Applications
14.3.7 Real Time vs. Real Fast: How to Choose?

15 Advanced Synchronization: Memory Ordering

15.1 Ordering: Why and How?

15.1.2 How to Force Ordering?
15.1.3 BasicRulesof Thumb
152 Tricksand Traps o
15.2.1 Variables With Multiple Values
15.2.2 Memory-Reference Reordering
15.2.3 Address Dependencies
15.2.4 DataDependencies,
15.2.5 Control Dependencies
15.2.6 Cache Coherence
15.2.7 Multicopy Atomicity
15.3 Compile-Time Consternation
15.3.1 Memory-Reference Restrictions
15.3.2 Address- and Data-Dependency Difficulties
15.3.3 Control-Dependency Calamities
15.4 Higher-Level Primitives

393
393
393
393
394
395
400
401
402
402
405
406
407
408
408
409

411
411
412
413
414
416
417
417
423
424
425
426
439
443

445

CONTENTS

15.4.1
15.4.2

Memory Allocation
RCU . . .

15.5 Hardware Specifics

15.5.1
15.5.2
15.5.3
1554
15.5.5
15.5.6
15.5.7
15.5.8
15.5.9

Alpha
Armv7-A/R
Armv8 . .. L
Itanium
MIPS
POWER /PowerPC
SPARCTSO
X80 . e

17 Conflicting Visions of the Future
17.1 The Future of CPU Technology Ain’t What it UsedtoBe

17.1.1
17.1.2
17.1.3
17.1.4

Uniprocessor Uber Alles
Multithreaded Mania L.
Moreofthe Same
Crash Dummies Slamming into the Memory Wall

17.2 Transactional Memory

17.2.1
17.2.2
17.2.3
17.2.4

Outside World
Process Modification
Synchronization
Discussion

17.3 Hardware Transactional Memory

17.3.1
17.3.2
17.3.3
17.3.4
17.3.5
17.3.6

17.4.1
17.4.2
17.4.3
17.4.4
17.4.5
17.4.6
17.4.7

HTM Benefits WRT to Locking
HTM Weaknesses WRT Locking
HTM Weaknesses WRT to Locking When Augmented

Potential Game Changers
Conclusions

Environment 0oL
Overhead
Locate Bugs
Minimal Scaffolding
RelevantBugs
Formal Regression Scorecard

17.5 Functional Programming for Parallelism

ix

486
487
496
499
501
502
503
504
505
506
507
508
508

511
511
512
513

CONTENTS

A TImportant Questions

A.1 What Does “After” Mean?
A.2 What is the Difference Between “Concurrent” and “Parallel”?
A3 WhatTimelIsIt?
A4 How Much Ordering?
A.4.1 Where is the Defining Data?
A.4.2 Consistent Data Used Consistently?
A.4.3 Isthe Problem Partitionable?
A44 Noneofthe Above?.

“Toy” RCU Implementations

B.1 Lock-BasedRCU
B.2 Per-Thread Lock-BasedRCU
B.3 Simple Counter-Based RCU
B.4 Starvation-Free Counter-Based RCU
B.5 Scalable Counter-BasedRCU
B.6 Scalable Counter-Based RCU With Shared Grace Periods
B.7 RCU Based on Free-Running Counter
B.8 Nestable RCU Based on Free-Running Counter
B.9 RCU Based on Quiescent States
B.10 Summary of Toy RCU Implementations

Why Memory Barriers?
C.1 CacheStructure
C.2 Cache-Coherence Protocols
C.2.1 MESIStates
C.2.2 MESI Protocol Messages
C.2.3 MESI State Diagram
C.2.4 MESIProtocol Example
C.3 Stores Result in Unnecessary Stalls
C.3.1 StoreBuffers L.
C.3.2 Store Forwarding
C.3.3 Store Buffers and Memory Barriers
C.4 Store Sequences Result in Unnecessary Stalls
C4.1 InvalidateQueues.
C.4.2 Invalidate Queues and Invalidate Acknowledge
C.4.3 Invalidate Queues and Memory Barriers
C.5 Read and Write Memory Barriers
C.6 Example Memory-Barrier Sequences
C.6.1 Ordering-Hostile Architecture
C.6.2 Examplel
C.63 Example2
C.64 Example3
C.7 Are Memory Barriers Forever?
C.8 Advice to Hardware Designers

565
565
569
570
571
571
572
572
573

575
575
576
577
578
582
584
586
589
591
593

595
595
597

CONTENTS

D Style Guide

D.1 Paul’sConventions
D.2 NISTStyleGuide
D.2.1 UnitSymbol
D.2.2 NIST Guide Yet ToBe Followed
D3 HEIgX Conventions
D.3.1 Monospace Font
D.3.2 Crossreference
D.3.3 Non Breakable Spaces
D.3.4 Hyphenationand Dashes
D.3.5 Punctuation o
D.3.6 Floating Object Format
D.3.7 Improvement Candidates

E Answers to Quick Quizzes
E.1 HowToUse ThisBook
E.2 Introduction
E.3 HardwareanditsHabits.
E4 ToolsoftheTrade
E5 Counting e
E.6 Partitioning and Synchronization Design
E.7 Locking
E.8 DataOwnership
E.9 Deferred Processing
E.10 Data Structures L
E.11 Validation
E.12 Formal Verification
E.13 Putting It All Together,
E.14 Advanced Synchronization
E.15 Advanced Synchronization: Memory Ordering
E.16 Easeof Use e
E.17 Conflicting Visions of the Future
E.18 Important Questions Lo
E.19 “Toy” RCU Implementations

Glossary
Bibliography

Credits
IEX Advisor o
Reviewers L
Machine Owners L
Original Publications,
Figure Credits
Other Support e

Xi

619
619
620
620
622
623
623
629
630
630
632
633
633

639
639
640
646
652
661
681
688
699
701
721
728
738
749
753
756
770
771
777
778
786

793

801

Xii

CONTENTS

If you would only recognize that life is hard, things
would be so much easier for you.

Louis D. Brandeis

Chapter 1

How To Use This Book

The purpose of this book is to help you program shared-memory parallel systems
without risking your sanity.! Nevertheless, you should think of the information in this
book as a foundation on which to build, rather than as a completed cathedral. Your
mission, if you choose to accept, is to help make further progress in the exciting field of
parallel programming—progress that will in time render this book obsolete.

Parallel programming in the 21% century is no longer focused solely on science,
research, and grand-challenge projects. And this is all to the good, because it means
that parallel programming is becoming an engineering discipline. Therefore, as befits
an engineering discipline, this book examines specific parallel-programming tasks and
describes how to approach them. In some surprisingly common cases, these tasks can
be automated.

This book is written in the hope that presenting the engineering discipline underlying
successful parallel-programming projects will free a new generation of parallel hackers
from the need to slowly and painstakingly reinvent old wheels, enabling them to instead
focus their energy and creativity on new frontiers. However, what you get from this
book will be determined by what you put into it. It is hoped that simply reading this
book will be helpful, and that working the Quick Quizzes will be even more helpful.
However, the best results come from applying the techniques taught in this book to
real-life problems. As always, practice makes perfect.

But no matter how you approach it, we sincerely hope that parallel programming
brings you at least as much fun, excitement, and challenge that it has brought to us!

1 Or, perhaps more accurately, without much greater risk to your sanity than that incurred
by non-parallel programming. Which, come to think of it, might not be saying all that much.

2 CHAPTER 1. HOW TO USE THIS BOOK
1.1 Roadmap

Cat: Where are you going?

Alice: Which way should I go?

Cat: That depends on where you are going.
Alice: I don’t know.

Cat: Then it doesn’t matter which way you go.

Lewis Carroll, Alice in Wonderland

This book is a handbook of widely applicable and heavily used design techniques, rather
than a collection of optimal algorithms with tiny areas of applicability. You are currently
reading Chapter 1, but you knew that already. Chapter 2 gives a high-level overview of
parallel programming.

Chapter 3 introduces shared-memory parallel hardware. After all, it is difficult to
write good parallel code unless you understand the underlying hardware. Because
hardware constantly evolves, this chapter will always be out of date. We will nevertheless
do our best to keep up. Chapter 4 then provides a very brief overview of common
shared-memory parallel-programming primitives.

Chapter 5 takes an in-depth look at parallelizing one of the simplest problems
imaginable, namely counting. Because almost everyone has an excellent grasp of
counting, this chapter is able to delve into many important parallel-programming issues
without the distractions of more-typical computer-science problems. My impression is
that this chapter has seen the greatest use in parallel-programming coursework.

Chapter 6 introduces a number of design-level methods of addressing the issues
identified in Chapter 5. It turns out that it is important to address parallelism at the
design level when feasible: To paraphrase Dijkstra [Dij68], “retrofitted parallelism
considered grossly suboptimal” [McK12b].

The next three chapters examine three important approaches to synchronization.
Chapter 7 covers locking, which is still not only the workhorse of production-quality
parallel programming, but is also widely considered to be parallel programming’s worst
villain. Chapter 8 gives a brief overview of data ownership, an often overlooked but
remarkably pervasive and powerful approach. Finally, Chapter 9 introduces a number
of deferred-processing mechanisms, including reference counting, hazard pointers,
sequence locking, and RCU.

Chapter 10 applies the lessons of previous chapters to hash tables, which are heavily
used due to their excellent partitionability, which (usually) leads to excellent performance
and scalability.

As many have learned to their sorrow, parallel programming without validation is a
sure path to abject failure. Chapter 11 covers various forms of testing. It is of course
impossible to test reliability into your program after the fact, so Chapter 12 follows up
with a brief overview of a couple of practical approaches to formal verification.

Chapter 13 contains a series of moderate-sized parallel programming problems. The
difficulty of these problems vary, but should be appropriate for someone who has
mastered the material in the previous chapters.

Chapter 14 looks at advanced synchronization methods, including non-blocking
synchronization and parallel real-time computing, while Chapter 15 covers the advanced
topic of memory ordering. Chapter 16 follows up with some ease-of-use advice.
Finally, Chapter 17 looks at a few possible future directions, including shared-memory

1.2. QUICK QUIZZES 3

parallel system design, software and hardware transactional memory, and functional
programming for parallelism.

This chapter is followed by a number of appendices. The most popular of these appears
to be Appendix C, which delves even further into memory ordering. Appendix E
contains the answers to the infamous Quick Quizzes, which are discussed in the next
section.

1.2 Quick Quizzes

Undertake something difficult, otherwise you will
never grow.

Abbreviated from Ronald E. Osburn

“Quick quizzes” appear throughout this book, and the answers may be found in
Appendix E starting on page 639. Some of them are based on material in which that
quick quiz appears, but others require you to think beyond that section, and, in some
cases, beyond the realm of current knowledge. As with most endeavors, what you get
out of this book is largely determined by what you are willing to put into it. Therefore,
readers who make a genuine effort to solve a quiz before looking at the answer find their
effort repaid handsomely with increased understanding of parallel programming.

[Quick Quiz 1.1: Where are the answers to the Quick Quizzes found? H J

Quick Quiz 1.2: Some of the Quick Quiz questions seem to be from the viewpoint of the
reader rather than the author. Is that really the intent? B

[Quick Quiz 1.3: These Quick Quizzes are just not my cup of tea. What can I do about it? .]

In short, if you need a deep understanding of the material, then you should invest
some time into answering the Quick Quizzes. Don’t get me wrong, passively reading
the material can be quite valuable, but gaining full problem-solving capability really
does require that you practice solving problems.

I learned this the hard way during coursework for my late-in-life Ph.D. I was studying
a familiar topic, and was surprised at how few of the chapter’s exercises I could answer
off the top of my head.> Forcing myself to answer the questions greatly increased
my retention of the material. So with these Quick Quizzes I am not asking you to do
anything that I have not been doing myself.

Finally, the most common learning disability is thinking that you already understand
the material at hand. The quick quizzes can be an extremely effective cure.

2 So I suppose that it was just as well that my professors refused to let me waive that
class!

4 CHAPTER 1. HOW TO USE THIS BOOK

1.3 Alternatives to This Book

Between two evils I always pick the one I never tried
before.

Mae West

As Knuth learned the hard way, if you want your book to be finite, it must be focused.
This book focuses on shared-memory parallel programming, with an emphasis on
software that lives near the bottom of the software stack, such as operating-system
kernels, parallel data-management systems, low-level libraries, and the like. The
programming language used by this book is C.

If you are interested in other aspects of parallelism, you might well be better served
by some other book. Fortunately, there are many alternatives available to you:

1. If you prefer a more academic and rigorous treatment of parallel programming,
you might like Herlihy’s and Shavit’s textbook [HSO8]. This book starts with
an interesting combination of low-level primitives at high levels of abstraction
from the hardware, and works its way through locking and simple data structures
including lists, queues, hash tables, and counters, culminating with transactional
memory. Michael Scott’s textbook [Scol3] approaches similar material with more
of a software-engineering focus, and, as far as [know, is the first formally published
academic textbook with section devoted to RCU.

2. If you would like an academic treatment of parallel programming from a program-
ming-language-pragmatics viewpoint, you might be interested in the concurrency
chapter from Scott’s textbook [Sco06] on programming-language pragmatics.

3. If you are interested in an object-oriented patternist treatment of parallel pro-
gramming focussing on C++, you might try Volumes 2 and 4 of Schmidt’s POSA
series [SSRB00O, BHSO7]. Volume 4 in particular has some interesting chapters
applying this work to a warehouse application. The realism of this example is
attested to by the section entitled “Partitioning the Big Ball of Mud”, in which
the problems inherent in parallelism often take a back seat to getting one’s head
around a real-world application.

4. If you want to work with Linux-kernel device drivers, then Corbet’s, Rubini’s, and
Kroah-Hartman’s “Linux Device Drivers” [CRKHO05] is indispensable, as is the
Linux Weekly News web site (http://lwn.net/). There is a large number of
books and resources on the more general topic of Linux kernel internals.

5. If your primary focus is scientific and technical computing, and you prefer a
patternist approach, you might try Mattson et al.’s textbook [MSMOS5]. It covers
Java, C/C++, OpenMP, and MPL. Its patterns are admirably focused first on design,
then on implementation.

6. If your primary focus is scientific and technical computing, and you are interested
in GPUs, CUDA, and MPI, you might check out Norm Matloff’s “Programming
on Parallel Machines” [Mat13]. Of course, the GPU vendors have quite a bit of
additional information [AMD20, Zell1, NVil7a, NVil7b].

http://lwn.net/

14.

10.

11.

12.

13.

SAMPLE SOURCE CODE 5

. If you are interested in POSIX Threads, you might take a look at David R. Butenhof’s

book [But97]. In addition, W. Richard Stevens’s book [Ste92] covers UNIX and
POSIX, and Stewart Weiss’s lecture notes [Weil3] provide an thorough and
accessible introduction with a good set of examples.

If you are interested in C++11, you might like Anthony Williams’s “C++ Concur-
rency in Action: Practical Multithreading” [Wil12].

If you are interested in C++, but in a Windows environment, you might try Herb
Sutter’s “Effective Concurrency” series in Dr. Dobbs Journal [Sut08]. This series
does a reasonable job of presenting a commonsense approach to parallelism.

If you want to try out Intel Threading Building Blocks, then perhaps James
Reinders’s book [Rei07] is what you are looking for.

Those interested in learning how various types of multi-processor hardware cache
organizations affect the implementation of kernel internals should take a look at
Curt Schimmel’s classic treatment of this subject [Sch94].

If you are looking for a hardware view, John Hennessy’s and David Patterson’s
classic textbook [HP11] is well worth a read. If you are looking for an academic
textbook on memory ordering, that of Daniel Sorin et al. [SHW11] is highly
recommended.

Finally, those using Java might be well-served by Doug Lea’s textbooks [Lea97,
GPB*07].

However, if you are interested in principles of parallel design for low-level software,
especially software written in C, read on!

1.4 Sample Source Code

Use the source, Luke!

Unknown Star Wars fan

This book discusses its fair share of source code, and in many cases this source code
may be found in the CodeSamples directory of this book’s git tree. For example, on
UNIX systems, you should be able to type the following:

find CodeSamples -name rcu_rcpls.c -print

This command will locate the file rcu_rcpls. c, which is called out in Appendix B.
Other types of systems have well-known ways of locating files by filename.

6 CHAPTER 1. HOW TO USE THIS BOOK

Listing 1.1: Creating an Up-To-Date PDF

git clone git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
cd perfbook

You may need to install a font. See item 1 in FAQ.txt.

make # -jN for parallel build

evince perfbook.pdf & # Two-column version

make perfbook-1c.pdf

evince perfbook-l1c.pdf & # One-column version for e-readers

make help # Display other build options

Listing 1.2: Generating an Updated PDF

git remote update

git checkout origin/master

make # -jN for parallel build

evince perfbook.pdf & # Two-column version

make perfbook-lc.pdf

evince perfbook-1c.pdf & # One-column version for e-readers

1.5 Whose Book Is This?

If you become a teacher, by your pupils you’ll be
taught.

Oscar Hammerstein 11

As the cover says, the editor is one Paul E. McKenney. However, the editor does accept
contributions via the perfbook@vger.kernel.org email list. These contributions
can be in pretty much any form, with popular approaches including text emails, patches
against the book’s IZTEX source, and even git pull requests. Use whatever form
works best for you.

To create patches or git pull requests, you will need the IATEX source to
the book, which is at git://git.kernel.org/pub/scm/linux/kernel/git/
paulmck/perfbook.git. You will of course also need git and I&TX, which are
available as part of most mainstream Linux distributions. Other packages may be
required, depending on the distribution you use. The required list of packages for a
few popular distributions is listed in the file FAQ-BUILD. txt in the IZIEX source to the
book.

To create and display a current IATEX source tree of this book, use the list of Linux
commands shown in Listing 1.1. In some environments, the evince command that
displays perfbook.pdf may need to be replaced, for example, with acroread. The
git clone command need only be used the first time you create a PDF, subsequently,
you can run the commands shown in Listing 1.2 to pull in any updates and generate an
updated PDF. The commands in Listing 1.2 must be run within the perfbook directory
created by the commands shown in Listing 1.1.

PDFs of this book are sporadically posted at http://kernel.org/pub/
linux/kernel/people/paulmck/perfbook/perfbook.html and at http://
www.rdrop.com/users/paulmck/perfbook/.

The actual process of contributing patches and sending git pull requests is
similar to that of the Linux kernel, which is documented in the Documentation/
SubmittingPatches file in the Linux source tree. One important requirement is
that each patch (or commit, in the case of a git pull request) must contain a valid
Signed-off-by: line, which has the following format:

mailto:perfbook@vger.kernel.org
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://www.rdrop.com/users/paulmck/perfbook/
http://www.rdrop.com/users/paulmck/perfbook/

1.5. WHOSE BOOK IS THIS? 7

Signed-off-by: My Name <mynameQexample.org>

Please see http://1kml.org/1kml/2007/1/15/219 for an example patch con-
taining a Signed-off-by: line.

It is important to note that the Signed-off-by: line has a very specific meaning,
namely that you are certifying that:

(a) The contribution was created in whole or in part by me and I have the right to
submit it under the open source license indicated in the file; or

(b) The contribution is based upon previous work that, to the best of my knowledge, is
covered under an appropriate open source License and I have the right under that
license to submit that work with modifications, whether created in whole or in part
by me, under the same open source license (unless I am permitted to submit under
a different license), as indicated in the file; or

(c) The contribution was provided directly to me by some other person who certified
(a), (b) or (¢) and I have not modified it.

(d) T understand and agree that this project and the contribution are public and that
a record of the contribution (including all personal information I submit with
it, including my sign-off) is maintained indefinitely and may be redistributed
consistent with this project or the open source license(s) involved.

This is quite similar to the Developer’s Certificate of Origin (DCO) 1.1 used by the
Linux kernel. You must use your real name: I unfortunately cannot accept pseudonymous
or anonymous contributions.

The language of this book is American English, however, the open-source nature
of this book permits translations, and I personally encourage them. The open-source
licenses covering this book additionally allow you to sell your translation, if you wish. I
do request that you send me a copy of the translation (hardcopy if available), but this
is a request made as a professional courtesy, and is not in any way a prerequisite to
the permission that you already have under the Creative Commons and GPL licenses.
Please see the FAQ.txt file in the source tree for a list of translations currently in
progress. I consider a translation effort to be “in progress” once at least one chapter has
been fully translated.

There are many styles under the “American English” rubric. The style for this
particular book is documented in Appendix D.

As noted at the beginning of this section, I am this book’s editor. However, if you
choose to contribute, it will be your book as well. In that spirit, I offer you Chapter 2,
our introduction.

http://lkml.org/lkml/2007/1/15/219

CHAPTER 1. HOW TO USE THIS BOOK

If parallel programming is so hard, why are there so
many parallel programs?

Unknown

Chapter 2

Introduction

Parallel programming has earned a reputation as one of the most difficult areas a
hacker can tackle. Papers and textbooks warn of the perils of deadlock, livelock, race
conditions, non-determinism, Amdahl’s-Law limits to scaling, and excessive realtime
latencies. And these perils are quite real; we authors have accumulated uncounted years
of experience along with the resulting emotional scars, grey hairs, and hair loss.

However, new technologies that are difficult to use at introduction invariably become
easier over time. For example, the once-rare ability to drive a car is now commonplace
in many countries. This dramatic change came about for two basic reasons: (1) cars
became cheaper and more readily available, so that more people had the opportunity to
learn to drive, and (2) cars became easier to operate due to automatic transmissions,
automatic chokes, automatic starters, greatly improved reliability, and a host of other
technological improvements.

The same is true for many other technologies, including computers. It is no longer
necessary to operate a keypunch in order to program. Spreadsheets allow most non-
programmers to get results from their computers that would have required a team of
specialists a few decades ago. Perhaps the most compelling example is web-surfing
and content creation, which since the early 2000s has been easily done by untrained,
uneducated people using various now-commonplace social-networking tools. As
recently as 1968, such content creation was a far-out research project [Eng68], described
at the time as “like a UFO landing on the White House lawn”[Gri00].

Therefore, if you wish to argue that parallel programming will remain as difficult as
it is currently perceived by many to be, it is you who bears the burden of proof, keeping
in mind the many centuries of counter-examples in many fields of endeavor.

2.1 Historic Parallel Programming Difficulties

Not the power to remember, but its very opposite, the
power to forget, is a necessary condition for our
existence.

Sholem Asch

As indicated by its title, this book takes a different approach. Rather than complain
about the difficulty of parallel programming, it instead examines the reasons why

9

10 CHAPTER 2. INTRODUCTION

parallel programming is difficult, and then works to help the reader to overcome these
difficulties. As will be seen, these difficulties have historically fallen into several
categories, including:

1. The historic high cost and relative rarity of parallel systems.

2. The typical researcher’s and practitioner’s lack of experience with parallel systems.
3. The paucity of publicly accessible parallel code.

4. The lack of a widely understood engineering discipline of parallel programming.

5. The high overhead of communication relative to that of processing, even in tightly
coupled shared-memory computers.

Many of these historic difficulties are well on the way to being overcome. First, over
the past few decades, the cost of parallel systems has decreased from many multiples of
that of a house to that of a modest meal, courtesy of Moore’s Law. Papers calling out
the advantages of multicore CPUs were published as early as 1996 [ONH*96]. IBM
introduced simultaneous multi-threading into its high-end POWER family in 2000, and
multicore in 2001. Intel introduced hyperthreading into its commodity Pentium line in
November 2000, and both AMD and Intel introduced dual-core CPUs in 2005. Sun
followed with the multicore/multi-threaded Niagara in late 2005. In fact, by 2008, it was
becoming difficult to find a single-CPU desktop system, with single-core CPUs being
relegated to netbooks and embedded devices. By 2012, even smartphones were starting
to sport multiple CPUs. By 2020, safety-critical software standards started addressing
concurrency.

Second, the advent of low-cost and readily available multicore systems means that the
once-rare experience of parallel programming is now available to almost all researchers
and practitioners. In fact, parallel systems have long been within the budget of students
and hobbyists. We can therefore expect greatly increased levels of invention and
innovation surrounding parallel systems, and that increased familiarity will over time
make the once prohibitively expensive field of parallel programming much more friendly
and commonplace.

Third, in the 20" century, large systems of highly parallel software were almost
always closely guarded proprietary secrets. In happy contrast, the 21% century has
seen numerous open-source (and thus publicly available) parallel software projects,
including the Linux kernel [Tor03], database systems [Pos08, MS08], and message-
passing systems [The08, UniO8a]. This book will draw primarily from the Linux kernel,
but will provide much material suitable for user-level applications.

Fourth, even though the large-scale parallel-programming projects of the 1980s and
1990s were almost all proprietary projects, these projects have seeded other communities
with cadres of developers who understand the engineering discipline required to develop
production-quality parallel code. A major purpose of this book is to present this
engineering discipline.

Unfortunately, the fifth difficulty, the high cost of communication relative to that
of processing, remains largely in force. This difficulty has been receiving increasing
attention during the new millennium. However, according to Stephen Hawking,
the finite speed of light and the atomic nature of matter will limit progress in this
area [Gar07, Moo03]. Fortunately, this difficulty has been in force since the late 1980s,
so that the aforementioned engineering discipline has evolved practical and effective

2.2. PARALLEL PROGRAMMING GOALS 11

strategies for handling it. In addition, hardware designers are increasingly aware of
these issues, so perhaps future hardware will be more friendly to parallel software, as
discussed in Section 3.3.

Quick Quiz 2.1: Come on now!!! Parallel programming has been known to be exceedingly
hard for many decades. You seem to be hinting that it is not so hard. What sort of game are you
playing? W

However, even though parallel programming might not be as hard as is commonly
advertised, it is often more work than is sequential programming.

Quick Quiz 2.2: How could parallel programming ever be as easy as sequential programming?

It therefore makes sense to consider alternatives to parallel programming. However,
it is not possible to reasonably consider parallel-programming alternatives without
understanding parallel-programming goals. This topic is addressed in the next section.

2.2 Parallel Programming Goals

If you don’t know where you are going, you will end
up somewhere else.

Yogi Berra

The three major goals of parallel programming (over and above those of sequential
programming) are as follows:

1. Performance.
2. Productivity.

3. Generality.

Unfortunately, given the current state of the art, it is possible to achieve at best two of
these three goals for any given parallel program. These three goals therefore form the
iron triangle of parallel programming, a triangle upon which overly optimistic hopes all
too often come to grief.!

Quick Quiz 2.3: Oh, really??? What about correctness, maintainability, robustness, and so
on? A

Quick Quiz 2.4: And if correctness, maintainability, and robustness don’t make the list, why
do productivity and generality?

Quick Quiz 2.5: Given that parallel programs are much harder to prove correct than are
sequential programs, again, shouldn’t correctness really be on the list? H

[Quick Quiz 2.6: What about just having fun? B]

Each of these goals is elaborated upon in the following sections.

! Kudos to Michael Wong for naming the iron triangle.

12 CHAPTER 2. INTRODUCTION

10000 T T T T 1T T 1T 3

2 s
o 5 i
S 1000 | ¢
S C]
8 - .
) 100 -
> - + 1
Y -
10 | Fep =

é i 4]
& | H#+ + i
) 1EF + —
& [+]

0.1 I A T T R R A
Te) o To] o Te) o Te) o Te) o
N~ 0] 0] D (o] o o ~— — Al
» » » » » o o o o o
~— ~— — ~— ~— Al (qV] A (q\] (q\]
Year

Figure 2.1: MIPS/Clock-Frequency Trend for Intel CPUs

2.2.1 Performance

Performance is the primary goal behind most parallel-programming effort. After all, if
performance is not a concern, why not do yourself a favor: Just write sequential code,
and be happy? It will very likely be easier and you will probably get done much more
quickly.

Quick Quiz 2.7: Are there no cases where parallel programming is about something other
than performance? W

Note that “performance” is interpreted broadly here, including for example scalability
(performance per CPU) and efficiency (performance per watt).

That said, the focus of performance has shifted from hardware to parallel software.
This change in focus is due to the fact that, although Moore’s Law continues to deliver
increases in transistor density, it has ceased to provide the traditional single-threaded
performance increases. This can be seen in Figure 2.1%, which shows that writing
single-threaded code and simply waiting a year or two for the CPUs to catch up may
no longer be an option. Given the recent trends on the part of all major manufacturers
towards multicore/multithreaded systems, parallelism is the way to go for those wanting
to avail themselves of the full performance of their systems.

Quick Quiz 2.8: Why not instead rewrite programs from inefficient scripting languages to C
orC++? W

Even so, the first goal is performance rather than scalability, especially given that the
easiest way to attain linear scalability is to reduce the performance of each CPU [Tor01].

2 This plot shows clock frequencies for newer CPUs theoretically capable of retiring one
or more instructions per clock, and MIPS (millions of instructions per second, usually from
the old Dhrystone benchmark) for older CPUs requiring multiple clocks to execute even the
simplest instruction. The reason for shifting between these two measures is that the newer
CPUS’ ability to retire multiple instructions per clock is typically limited by memory-system
performance. Furthermore, the benchmarks commonly used on the older CPUs are obsolete,
and it is difficult to run the newer benchmarks on systems containing the old CPUs, in part
because it is hard to find working instances of the old CPUs.

2.2. PARALLEL PROGRAMMING GOALS 13

Given a four-CPU system, which would you prefer? A program that provides 100
transactions per second on a single CPU, but does not scale at all? Or a program that
provides 10 transactions per second on a single CPU, but scales perfectly? The first
program seems like a better bet, though the answer might change if you happened to
have a 32-CPU system.

That said, just because you have multiple CPUs is not necessarily in and of itself
areason to use them all, especially given the recent decreases in price of multi-CPU
systems. The key point to understand is that parallel programming is primarily a
performance optimization, and, as such, it is one potential optimization of many. If your
program is fast enough as currently written, there is no reason to optimize, either by
parallelizing it or by applying any of a number of potential sequential optimizations.?
By the same token, if you are looking to apply parallelism as an optimization to a
sequential program, then you will need to compare parallel algorithms to the best
sequential algorithms. This may require some care, as far too many publications ignore
the sequential case when analyzing the performance of parallel algorithms.

2.2.2 Productivity

Quick Quiz 2.9: Why all this prattling on about non-technical issues??? And not just any
non-technical issue, but productivity of all things? Who cares? H

Productivity has been becoming increasingly important in recent decades. To see
this, consider that the price of early computers was tens of millions of dollars at a time
when engineering salaries were but a few thousand dollars a year. If dedicating a team
of ten engineers to such a machine would improve its performance, even by only 10 %,
then their salaries would be repaid many times over.

One such machine was the CSIRAC, the oldest still-intact stored-program computer,
which was put into operation in 1949 [Mus04, Dep06]. Because this machine was built
before the transistor era, it was constructed of 2,000 vacuum tubes, ran with a clock
frequency of 1 kHz, consumed 30kW of power, and weighed more than three metric
tons. Given that this machine had but 768 words of RAM, it is safe to say that it did
not suffer from the productivity issues that often plague today’s large-scale software
projects.

Today, it would be quite difficult to purchase a machine with so little computing power.
Perhaps the closest equivalents are 8-bit embedded microprocessors exemplified by the
venerable Z80 [Wik08], but even the old Z80 had a CPU clock frequency more than
1,000 times faster than the CSIRAC. The Z80 CPU had 8,500 transistors, and could be
purchased in 2008 for less than $2 US per unit in 1,000-unit quantities. In stark contrast
to the CSIRAC, software-development costs are anything but insignificant for the Z80.

The CSIRAC and the Z80 are two points in a long-term trend, as can be seen in
Figure 2.2. This figure plots an approximation to computational power per die over the
past four decades, showing an impressive six-order-of-magnitude increase over a period
of forty years. Note that the advent of multicore CPUs has permitted this increase to
continue apace despite the clock-frequency wall encountered in 2003, albeit courtesy of
dies supporting more than 50 hardware threads each.

One of the inescapable consequences of the rapid decrease in the cost of hardware is
that software productivity becomes increasingly important. It is no longer sufficient

3 Of course, if you are a hobbyist whose primary interest is writing parallel software,
that is more than enough reason to parallelize whatever software you are interested in.

14 CHAPTER 2. INTRODUCTION

16406 FT—T—T—T T T T T 3
100000 | w.F
L .Ht# u
10000 .
2 ouo | e 4]
g ; g ;
& 100 - +-F'+ &
= 10 5 -
C +++_F|.]
BT]
F +]

0.1 | | | | | | | |
Te] o n o T} o To] o n o
N~ o0 [e0] D D o () ~— ~— Al
(o)} D (o)} (o)} (o)} o o o o o
~— ~ ~ ~— ~— [aV] [aV] Al Al Al

Year

Figure 2.2: MIPS per Die for Intel CPUs

merely to make efficient use of the hardware: It is now necessary to make extremely
efficient use of software developers as well. This has long been the case for sequential
hardware, but parallel hardware has become a low-cost commodity only recently.
Therefore, only recently has high productivity become critically important when
creating parallel software.

Quick Quiz 2.10: Given how cheap parallel systems have become, how can anyone afford to
pay people to program them? W

Perhaps at one time, the sole purpose of parallel software was performance. Now,
however, productivity is gaining the spotlight.

2.2.3 Generality

One way to justify the high cost of developing parallel software is to strive for maximal
generality. All else being equal, the cost of a more-general software artifact can be
spread over more users than that of a less-general one. In fact, this economic force
explains much of the maniacal focus on portability, which can be seen as an important
special case of generality.*

Unfortunately, generality often comes at the cost of performance, productivity, or
both. For example, portability is often achieved via adaptation layers, which inevitably
exact a performance penalty. To see this more generally, consider the following popular
parallel programming environments:

C/C++ “Locking Plus Threads”: This category, which includes POSIX Threads
(pthreads) [Ope97], Windows Threads, and numerous operating-system kernel
environments, offers excellent performance (at least within the confines of a
single SMP system) and also offers good generality. Pity about the relatively low
productivity.

Java: This general purpose and inherently multithreaded programming environment
is widely believed to offer much higher productivity than C or C++, courtesy of

4 Kudos to Michael Wong for pointing this out.

2.2. PARALLEL PROGRAMMING GOALS 15

Productivity

Performance
Ajeiauan

Figure 2.3: Software Layers and Performance, Productivity, and Generality

the automatic garbage collector and the rich set of class libraries. However, its
performance, though greatly improved in the early 2000s, lags that of C and C++.

MPI: This Message Passing Interface [MPIO8] powers the largest scientific and technical
computing clusters in the world and offers unparalleled performance and scalability.
In theory, it is general purpose, but it is mainly used for scientific and technical
computing. Its productivity is believed by many to be even lower than that of
C/C++ “locking plus threads” environments.

OpenMP: This set of compiler directives can be used to parallelize loops. It is thus
quite specific to this task, and this specificity often limits its performance. It is,
however, much easier to use than MPI or C/C++ “locking plus threads.”

SQL: Structured Query Language [Int92] is specific to relational database queries.
However, its performance is quite good as measured by the Transaction Processing
Performance Council (TPC) benchmark results [Tra01]. Productivity is excellent;
in fact, this parallel programming environment enables people to make good
use of a large parallel system despite having little or no knowledge of parallel
programming concepts.

The nirvana of parallel programming environments, one that offers world-class
performance, productivity, and generality, simply does not yet exist. Until such a
nirvana appears, it will be necessary to make engineering tradeoffs among performance,
productivity, and generality. One such tradeoff is shown in Figure 2.3, which shows how
productivity becomes increasingly important at the upper layers of the system stack,
while performance and generality become increasingly important at the lower layers
of the system stack. The huge development costs incurred at the lower layers must be
spread over equally huge numbers of users (hence the importance of generality), and
performance lost in lower layers cannot easily be recovered further up the stack. In the
upper layers of the stack, there might be very few users for a given specific application,
in which case productivity concerns are paramount. This explains the tendency towards
“bloatware” further up the stack: Extra hardware is often cheaper than extra developers.

Edition.2-rc3

16 CHAPTER 2. INTRODUCTION

Special-Purpose
~<— Env Productive

for User 1

~ A

Special-Purpose
Environment
Productlve for User 2

User 5 General- Purpose User 4
Environment

Special-Purpose Environment

Productive for User 3 Special-Purpose

Environment
Productive for User 4

Figure 2.4: Tradeoff Between Productivity and Generality

This book is intended for developers working near the bottom of the stack, where
performance and generality are of greatest concern.

It is important to note that a tradeoff between productivity and generality has existed
for centuries in many fields. For but one example, a nailgun is more productive than
a hammer for driving nails, but in contrast to the nailgun, a hammer can be used for
many things besides driving nails. It should therefore be no surprise to see similar
tradeoffs appear in the field of parallel computing. This tradeoff is shown schematically
in Figure 2.4. Here, users 1, 2, 3, and 4 have specific jobs that they need the computer to
help them with. The most productive possible language or environment for a given user is
one that simply does that user’s job, without requiring any programming, configuration,
or other setup.

Quick Quiz 2.11: This is a ridiculously unachievable ideal! Why not focus on something that
is achievable in practice? W

Unfortunately, a system that does the job required by user 1 is unlikely to do user 2’s job.
In other words, the most productive languages and environments are domain-specific,
and thus by definition lacking generality.

Another option is to tailor a given programming language or environment to the
hardware system (for example, low-level languages such as assembly, C, C++, or Java)
or to some abstraction (for example, Haskell, Prolog, or Snobol), as is shown by the
circular region near the center of Figure 2.4. These languages can be considered to be
general in the sense that they are equally ill-suited to the jobs required by users 1, 2, 3,
and 4. In other words, their generality comes at the expense of decreased productivity
when compared to domain-specific languages and environments. Worse yet, a language
that is tailored to a given abstraction is likely to suffer from performance and scalability
problems unless and until it can be efficiently mapped to real hardware.

Is there no escape from iron triangle’s three conflicting goals of performance,
productivity, and generality?

It turns out that there often is an escape, for example, using the alternatives to parallel
programming discussed in the next section. After all, parallel programming can be a
great deal of fun, but it is not always the best tool for the job.

Edition.2-rc3

2.3. ALTERNATIVES TO PARALLEL PROGRAMMING 17

2.3 Alternatives to Parallel Programming

Experiment is folly when experience shows the way.

Roger M. Babson

In order to properly consider alternatives to parallel programming, you must first decide
on what exactly you expect the parallelism to do for you. As seen in Section 2.2, the
primary goals of parallel programming are performance, productivity, and generality.
Because this book is intended for developers working on performance-critical code near
the bottom of the software stack, the remainder of this section focuses primarily on
performance improvement.

It is important to keep in mind that parallelism is but one way to improve performance.
Other well-known approaches include the following, in roughly increasing order of
difficulty:

1. Run multiple instances of a sequential application.
2. Make the application use existing parallel software.

3. Optimize the serial application.

These approaches are covered in the following sections.

2.3.1 Multiple Instances of a Sequential Application

Running multiple instances of a sequential application can allow you to do parallel
programming without actually doing parallel programming. There are a large number
of ways to approach this, depending on the structure of the application.

If your program is analyzing a large number of different scenarios, or is analyzing a
large number of independent data sets, one easy and effective approach is to create a
single sequential program that carries out a single analysis, then use any of a number of
scripting environments (for example the bash shell) to run a number of instances of
that sequential program in parallel. In some cases, this approach can be easily extended
to a cluster of machines.

This approach may seem like cheating, and in fact some denigrate such programs
as “embarrassingly parallel”. And in fact, this approach does have some potential
disadvantages, including increased memory consumption, waste of CPU cycles recom-
puting common intermediate results, and increased copying of data. However, it is
often extremely productive, garnering extreme performance gains with little or no added
effort.

2.3.2 Use Existing Parallel Software

There is no longer any shortage of parallel software environments that can present
a single-threaded programming environment, including relational databases [Dat82],
web-application servers, and map-reduce environments. For example, a common design
provides a separate process for each user, each of which generates SQL from user queries.
This per-user SQL is run against a common relational database, which automatically
runs the users’ queries concurrently. The per-user programs are responsible only for

18 CHAPTER 2. INTRODUCTION

the user interface, with the relational database taking full responsibility for the difficult
issues surrounding parallelism and persistence.

In addition, there are a growing number of parallel library functions, particularly for
numeric computation. Even better, some libraries take advantage of special-purpose
hardware such as vector units and general-purpose graphical processing units (GPGPUs).

Taking this approach often sacrifices some performance, at least when compared to
carefully hand-coding a fully parallel application. However, such sacrifice is often well
repaid by a huge reduction in development effort.

Quick Quiz 2.12: Wait a minute! Doesn’t this approach simply shift the development effort
from you to whoever wrote the existing parallel software you are using? H

2.3.3 Performance Optimization

Up through the early 2000s, CPU clock frequencies doubled every 18 months. It
was therefore usually more important to create new functionality than to do careful
performance optimization. Now that Moore’s Law is “only” increasing transistor
density instead of increasing both transistor density and per-transistor performance, it
might be a good time to rethink the importance of performance optimization. After
all, new hardware generations no longer bring significant single-threaded performance
improvements. Furthermore, many performance optimizations can also conserve energy.

From this viewpoint, parallel programming is but another performance optimization,
albeit one that is becoming much more attractive as parallel systems become cheaper and
more readily available. However, it is wise to keep in mind that the speedup available
from parallelism is limited to roughly the number of CPUs (but see Section 6.5 for an
interesting exception). In contrast, the speedup available from traditional single-threaded
software optimizations can be much larger. For example, replacing a long linked list with
a hash table or a search tree can improve performance by many orders of magnitude. This
highly optimized single-threaded program might run much faster than its unoptimized
parallel counterpart, making parallelization unnecessary. Of course, a highly optimized
parallel program would be even better, aside from the added development effort required.

Furthermore, different programs might have different performance bottlenecks. For
example, if your program spends most of its time waiting on data from your disk drive,
using multiple CPUs will probably just increase the time wasted waiting for the disks.
In fact, if the program was reading from a single large file laid out sequentially on a
rotating disk, parallelizing your program might well make it a lot slower due to the
added seek overhead. You should instead optimize the data layout so that the file can be
smaller (thus faster to read), split the file into chunks which can be accessed in parallel
from different drives, cache frequently accessed data in main memory, or, if possible,
reduce the amount of data that must be read.

Quick Quiz 2.13: What other bottlenecks might prevent additional CPUs from providing
additional performance? H

Parallelism can be a powerful optimization technique, but it is not the only such
technique, nor is it appropriate for all situations. Of course, the easier it is to
parallelize your program, the more attractive parallelization becomes as an optimization.
Parallelization has a reputation of being quite difficult, which leads to the question
“exactly what makes parallel programming so difficult?”

2.4. WHAT MAKES PARALLEL PROGRAMMING HARD? 19

e)\
Performance Productivity

Generality

o J

Figure 2.5: Categories of Tasks Required of Parallel Programmers

2.4 What Makes Parallel Programming Hard?

Real difficulties can be overcome; it is only the
imaginary ones that are unconquerable.

Theodore N. Vail

It is important to note that the difficulty of parallel programming is as much a human-
factors issue as it is a set of technical properties of the parallel programming problem.
We do need human beings to be able to tell parallel systems what to do, otherwise known
as programming. But parallel programming involves two-way communication, with
a program’s performance and scalability being the communication from the machine
to the human. In short, the human writes a program telling the computer what to do,
and the computer critiques this program via the resulting performance and scalability.
Therefore, appeals to abstractions or to mathematical analyses will often be of severely
limited utility.

In the Industrial Revolution, the interface between human and machine was evaluated
by human-factor studies, then called time-and-motion studies. Although there have
been a few human-factor studies examining parallel programming [ENS05, ESO5,
HCS™05, SS94], these studies have been extremely narrowly focused, and hence unable
to demonstrate any general results. Furthermore, given that the normal range of
programmer productivity spans more than an order of magnitude, it is unrealistic
to expect an affordable study to be capable of detecting (say) a 10 % difference in
productivity. Although the multiple-order-of-magnitude differences that such studies
can reliably detect are extremely valuable, the most impressive improvements tend to
be based on a long series of 10 % improvements.

We must therefore take a different approach.

One such approach is to carefully consider the tasks that parallel programmers must
undertake that are not required of sequential programmers. We can then evaluate how
well a given programming language or environment assists the developer with these
tasks. These tasks fall into the four categories shown in Figure 2.5, each of which is
covered in the following sections.

Edition.2-rc3

20 CHAPTER 2. INTRODUCTION

2.4.1 Work Partitioning

Work partitioning is absolutely required for parallel execution: if there is but one “glob”
of work, then it can be executed by at most one CPU at a time, which is by definition
sequential execution. However, partitioning the code requires great care. For example,
uneven partitioning can result in sequential execution once the small partitions have
completed [Amd67]. In less extreme cases, load balancing can be used to fully utilize
available hardware and restore performance and scalabilty.

Although partitioning can greatly improve performance and scalability, it can also
increase complexity. For example, partitioning can complicate handling of global errors
and events: A parallel program may need to carry out non-trivial synchronization in
order to safely process such global events. More generally, each partition requires
some sort of communication: After all, if a given thread did not communicate at all,
it would have no effect and would thus not need to be executed. However, because
communication incurs overhead, careless partitioning choices can result in severe
performance degradation.

Furthermore, the number of concurrent threads must often be controlled, as each such
thread occupies common resources, for example, space in CPU caches. If too many
threads are permitted to execute concurrently, the CPU caches will overflow, resulting in
high cache miss rate, which in turn degrades performance. Conversely, large numbers
of threads are often required to overlap computation and I/O so as to fully utilize /O
devices.

Quick Quiz 2.14: Other than CPU cache capacity, what might require limiting the number of
concurrent threads? W

Finally, permitting threads to execute concurrently greatly increases the program’s
state space, which can make the program difficult to understand and debug, degrading
productivity. All else being equal, smaller state spaces having more regular structure
are more easily understood, but this is a human-factors statement as much as it is a
technical or mathematical statement. Good parallel designs might have extremely large
state spaces, but nevertheless be easy to understand due to their regular structure, while
poor designs can be impenetrable despite having a comparatively small state space. The
best designs exploit embarrassing parallelism, or transform the problem to one having
an embarrassingly parallel solution. In either case, “embarrassingly parallel” is in fact
an embarrassment of riches. The current state of the art enumerates good designs; more
work is required to make more general judgments on state-space size and structure.

2.4.2 Parallel Access Control

Given a single-threaded sequential program, that single thread has full access to all of
the program’s resources. These resources are most often in-memory data structures,
but can be CPUs, memory (including caches), I/O devices, computational accelerators,
files, and much else besides.

The first parallel-access-control issue is whether the form of access to a given
resource depends on that resource’s location. For example, in many message-passing
environments, local-variable access is via expressions and assignments, while remote-
variable access uses an entirely different syntax, usually involving messaging. The
POSIX Threads environment [Ope97], Structured Query Language (SQL) [Int92], and
partitioned global address-space (PGAS) environments such as Universal Parallel C

2.4. WHAT MAKES PARALLEL PROGRAMMING HARD? 21

(UPC) [EGCDO03] offer implicit access, while Message Passing Interface (MPI) [MPIOS]
offers explicit access because access to remote data requires explicit messaging.

The other parallel-access-control issue is how threads coordinate access to the
resources. This coordination is carried out by the very large number of synchronization
mechanisms provided by various parallel languages and environments, including
message passing, locking, transactions, reference counting, explicit timing, shared
atomic variables, and data ownership. Many traditional parallel-programming concerns
such as deadlock, livelock, and transaction rollback stem from this coordination.
This framework can be elaborated to include comparisons of these synchronization
mechanisms, for example locking vs. transactional memory [MMWO07], but such
elaboration is beyond the scope of this section. (See Sections 17.2 and 17.3 for more
information on transactional memory.)

[Quick Quiz 2.15: Just what is “explicit timing”??? W J

2.4.3 Resource Partitioning and Replication

The most effective parallel algorithms and systems exploit resource parallelism, so much
so that it is usually wise to begin parallelization by partitioning your write-intensive
resources and replicating frequently accessed read-mostly resources. The resource in
question is most frequently data, which might be partitioned over computer systems,
mass-storage devices, NUMA nodes, CPU cores (or dies or hardware threads), pages,
cache lines, instances of synchronization primitives, or critical sections of code. For
example, partitioning over locking primitives is termed “data locking” [BK85].

Resource partitioning is frequently application dependent. For example, numerical
applications frequently partition matrices by row, column, or sub-matrix, while com-
mercial applications frequently partition write-intensive data structures and replicate
read-mostly data structures. Thus, a commercial application might assign the data for a
given customer to a given few computers out of a large cluster. An application might
statically partition data, or dynamically change the partitioning over time.

Resource partitioning is extremely effective, but it can be quite challenging for
complex multilinked data structures.

2.4.4 Interacting With Hardware

Hardware interaction is normally the domain of the operating system, the compiler,
libraries, or other software-environment infrastructure. However, developers working
with novel hardware features and components will often need to work directly with such
hardware. In addition, direct access to the hardware can be required when squeezing
the last drop of performance out of a given system. In this case, the developer may
need to tailor or configure the application to the cache geometry, system topology, or
interconnect protocol of the target hardware.

In some cases, hardware may be considered to be a resource which is subject to
partitioning or access control, as described in the previous sections.

2.4.5 Composite Capabilities

Although these four capabilities are fundamental, good engineering practice uses
composites of these capabilities. For example, the data-parallel approach first partitions
the data so as to minimize the need for inter-partition communication, partitions the code

22 CHAPTER 2. INTRODUCTION

4 N

Performance - Productivity

Generality

o J

Figure 2.6: Ordering of Parallel-Programming Tasks

accordingly, and finally maps data partitions and threads so as to maximize throughput
while minimizing inter-thread communication, as shown in Figure 2.6. The developer
can then consider each partition separately, greatly reducing the size of the relevant state
space, in turn increasing productivity. Even though some problems are non-partitionable,
clever transformations into forms permitting partitioning can sometimes greatly enhance
both performance and scalability [Met99].

2.4.6 How Do Languages and Environments Assist With These
Tasks?

Although many environments require the developer to deal manually with these tasks,
there are long-standing environments that bring significant automation to bear. The poster
child for these environments is SQL, many implementations of which automatically
parallelize single large queries and also automate concurrent execution of independent
queries and updates.

These four categories of tasks must be carried out in all parallel programs, but that
of course does not necessarily mean that the developer must manually carry out these
tasks. We can expect to see ever-increasing automation of these four tasks as parallel
systems continue to become cheaper and more readily available.

[Quick Quiz 2.16: Are there any other obstacles to parallel programming? B]

2.5 Discussion

Until you try, you don’t know what you can’t do.

Henry James

This section has given an overview of the difficulties with, goals of, and alternatives to
parallel programming. This overview was followed by a discussion of what can make
parallel programming hard, along with a high-level approach for dealing with parallel
programming’s difficulties. Those who still insist that parallel programming is impossibly
difficult should review some of the older guides to parallel programmming [Seq88,

Edition.2-rc3

2.5. DISCUSSION 23

Dig89, BK85, Inm85]. The following quote from Andrew Birrell’s monograph [Dig89]
is especially telling:

Writing concurrent programs has a reputation for being exotic and difficult. I
believe it is neither. You need a system that provides you with good primitives
and suitable libraries, you need a basic caution and carefulness, you need an
armory of useful techniques, and you need to know of the common pitfalls. I
hope that this paper has helped you towards sharing my belief.

The authors of these older guides were well up to the parallel programming challenge
back in the 1980s. As such, there are simply no excuses for refusing to step up to the
parallel-programming challenge here in the 21% century!

We are now ready to proceed to the next chapter, which dives into the relevant
properties of the parallel hardware underlying our parallel software.

24

CHAPTER 2. INTRODUCTION

Premature abstraction is the root of all evil.

A cast of thousands

Chapter 3

Hardware and its Habits

Most people intuitively understand that passing messages between systems is more
expensive than performing simple calculations within the confines of a single system.
But it is also the case that communicating among threads within the confines of a single
shared-memory system can also be quite expensive. This chapter therefore looks at the
cost of synchronization and communication within a shared-memory system. These
few pages can do no more than scratch the surface of shared-memory parallel hardware
design; readers desiring more detail would do well to start with a recent edition of
Hennessy and Patterson’s classic text [HP11, HP9S5].

Quick Quiz 3.1: Why should parallel programmers bother learning low-level properties of
the hardware? Wouldn't it be easier, better, and more elegant to remain at a higher level of
abstraction? W

3.1 Overview

Mechanical Sympathy: Hardware and software
working together in harmony.

Martin Thompson

Careless reading of computer-system specification sheets might lead one to believe that
CPU performance is a footrace on a clear track, as illustrated in Figure 3.1, where the
race always goes to the swiftest.

Although there are a few CPU-bound benchmarks that approach the ideal case shown
in Figure 3.1, the typical program more closely resembles an obstacle course than a
race track. This is because the internal architecture of CPUs has changed dramatically
over the past few decades, courtesy of Moore’s Law. These changes are described in the
following sections.

3.1.1 Pipelined CPUs

In the 1980s, the typical microprocessor fetched an instruction, decoded it, and executed
it, typically taking af least three clock cycles to complete one instruction before even
starting the next. In contrast, the CPU of the late 1990s and of the 2000s execute

25

26 CHAPTER 3. HARDWARE AND ITS HABITS

Figure 3.1: CPU Performance at its Best

4,0 GHz clock, 20 M& L3
cache, 20 stage pipeline...

The only pipeline | need
is to cool of ¥ that hot-
headed brat.

Figure 3.2: CPUs Old and New

many instructions simultaneously, using pipelines; superscalar techniques; out-of-order
instruction and data handling; speculative execution, and more [HP11] in order to
optimize the flow of instructions and data through the CPU. Some cores have more
than one hardware thread, which is variously called simultaneous multithreading (SMT)
or hyperthreading (HT) [Fen73], each of which appears as an independent CPU to
software, at least from a functional viewpoint. These modern hardware features can
greatly improve performance, as illustrated by Figure 3.2.

Achieving full performance with a CPU having a long pipeline requires highly
predictable control flow through the program. Suitable control flow can be provided
by a program that executes primarily in tight loops, for example, arithmetic on large
matrices or vectors. The CPU can then correctly predict that the branch at the end of
the loop will be taken in almost all cases, allowing the pipeline to be kept full and the
CPU to execute at full speed.

However, branch prediction is not always so easy. For example, consider a program
with many loops, each of which iterates a small but random number of times. For
another example, consider an old-school object-oriented program with many virtual

3.1. OVERVIEW 27

Figure 3.3: CPU Meets a Pipeline Flush

Thread 0 Thread 1
Instructions Instructions

Decode and
Translate

Micro-Op
Scheduler

Registers
(100s!)

Execution
Units

Figure 3.4: Rough View of Modern Micro-Architecture

objects that can reference many different real objects, all with different implementations
for frequently invoked member functions, resulting in many calls through pointers. In
these cases, it is difficult or even impossible for the CPU to predict where the next
branch might lead. Then either the CPU must stall waiting for execution to proceed
far enough to be certain where that branch leads, or it must guess and then proceed
using speculative execution. Although guessing works extremely well for programs
with predictable control flow, for unpredictable branches (such as those in binary search)
the guesses will frequently be wrong. A wrong guess can be expensive because the
CPU must discard any speculatively executed instructions following the corresponding
branch, resulting in a pipeline flush. If pipeline flushes appear too frequently, they
drastically reduce overall performance, as fancifully depicted in Figure 3.3.

This gets even worse in the increasingly common case of hyperthreading (or SMT, if
you prefer), especially on pipelined superscalar out-of-order CPU featuring speculative
execution. In this increasingly common case, all the hardware threads sharing a core also
share that core’s resources, including registers, cache, execution units, and so on. The

28 CHAPTER 3. HARDWARE AND ITS HABITS

instructions are often decoded into micro-operations, and use of the shared execution
units and the hundreds of hardware registers is often coordinated by a micro-operation
scheduler. A rough diagram of such a two-threaded core is shown in Figure 3.4, and
more accurate (and thus more complex) diagrams are available in textbooks and scholarly
papers.! Therefore, the execution of one hardware thread can and often is perturbed by
the actions of other hardware threads sharing that core.

Even if only one hardware thread is active (for example, in old-school CPU designs
where there is only one thread), counterintuitive results are quite common. Execution
units often have overlapping capabilities, so that a CPU’s choice of execution unit can
result in pipeline stalls due to contention for that execution unit from later instructions.
In theory, this contention is avoidable, but in practice CPUs must choose very quickly
and without the benefit of clairvoyance. In particular, adding an instruction to a tight
loop can sometimes actually cause execution to speed up.

Unfortunately, pipeline flushes and shared-resource contention are not the only
hazards in the obstacle course that modern CPUs must run. The next section covers the
hazards of referencing memory.

3.1.2 Memory References

In the 1980s, it often took less time for a microprocessor to load a value from memory
than it did to execute an instruction. More recently, microprocessors might execute
hundreds or even thousands of instructions in the time required to access memory. This
disparity is due to the fact that Moore’s Law has increased CPU performance at a much
greater rate than it has decreased memory latency, in part due to the rate at which
memory sizes have grown. For example, a typical 1970s minicomputer might have 4 KB
(yes, kilobytes, not megabytes, let alone gigabytes or terabytes) of main memory, with
single-cycle access.” Present-day CPU designers still can construct a 4 KB memory
with single-cycle access, even on systems with multi-GHz clock frequencies. And
in fact they frequently do construct such memories, but they now call them “level-0
caches”, plus they can be quite a bit bigger than 4 KB.

Although the large caches found on modern microprocessors can do quite a bit to help
combat memory-access latencies, these caches require highly predictable data-access
patterns to successfully hide those latencies. Unfortunately, common operations such as
traversing a linked list have extremely unpredictable memory-access patterns—after
all, if the pattern was predictable, us software types would not bother with the pointers,
right? Therefore, as shown in Figure 3.5, memory references often pose severe obstacles
to modern CPUs.

Thus far, we have only been considering obstacles that can arise during a given CPU’s
execution of single-threaded code. Multi-threading presents additional obstacles to the
CPU, as described in the following sections.

3.1.3 Atomic Operations

One such obstacle is atomic operations. The problem here is that the whole idea of an
atomic operation conflicts with the piece-at-a-time assembly-line operation of a CPU
pipeline. To hardware designers’ credit, modern CPUs use a number of extremely clever
tricks to make such operations look atomic even though they are in fact being executed

! Here is one example for a late-2010s Intel core: https://en.wikichip.org/wiki/
intel/microarchitectures/skylake_(server).
2 It is only fair to add that each of these single cycles lasted no less than 1.6 microseconds.

https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)

3.1. OVERVIEW 29

Figure 3.5: CPU Meets a Memory Reference

piece-at-a-time, with one common trick being to identify all the cachelines containing
the data to be atomically operated on, ensure that these cachelines are owned by the
CPU executing the atomic operation, and only then proceed with the atomic operation
while ensuring that these cachelines remained owned by this CPU. Because all the data
is private to this CPU, other CPUs are unable to interfere with the atomic operation
despite the piece-at-a-time nature of the CPU’s pipeline. Needless to say, this sort of
trick can require that the pipeline must be delayed or even flushed in order to perform
the setup operations that permit a given atomic operation to complete correctly.

Figure 3.6: CPU Meets an Atomic Operation

In contrast, when executing a non-atomic operation, the CPU can load values from
cachelines as they appear and place the results in the store buffer, without the need to
wait for cacheline ownership. Although there are a number of hardware optimizations

30 CHAPTER 3. HARDWARE AND ITS HABITS

Figure 3.7: CPU Meets a Memory Barrier

that can sometimes hide cache latencies, the resulting effect on performance is all too
often as depicted in Figure 3.6.

Unfortunately, atomic operations usually apply only to single elements of data.
Because many parallel algorithms require that ordering constraints be maintained
between updates of multiple data elements, most CPUs provide memory barriers. These
memory barriers also serve as performance-sapping obstacles, as described in the next
section.

Quick Quiz 3.2: What types of machines would allow atomic operations on multiple data
elements? W

3.1.4 Memory Barriers

Memory barriers will be considered in more detail in Chapter 15 and Appendix C. In
the meantime, consider the following simple lock-based critical section:

spin_lock(&mylock) ;
a=a+1;
spin_unlock(&mylock) ;

w o

If the CPU were not constrained to execute these statements in the order shown, the
effect would be that the variable “a” would be incremented without the protection of
“mylock™, which would certainly defeat the purpose of acquiring it. To prevent such
destructive reordering, locking primitives contain either explicit or implicit memory
barriers. Because the whole purpose of these memory barriers is to prevent reorderings
that the CPU would otherwise undertake in order to increase performance, memory
barriers almost always reduce performance, as depicted in Figure 3.7.

As with atomic operations, CPU designers have been working hard to reduce
memory-barrier overhead, and have made substantial progress.

3.1. OVERVIEW 31

CACHE-
MISS

TOLL
BOOTH

Figure 3.8: CPU Meets a Cache Miss

3.1.5 Cache Misses

An additional multi-threading obstacle to CPU performance is the “cache miss”. As
noted earlier, modern CPUs sport large caches in order to reduce the performance
penalty that would otherwise be incurred due to high memory latencies. However, these
caches are actually counter-productive for variables that are frequently shared among
CPUs. This is because when a given CPU wishes to modify the variable, it is most
likely the case that some other CPU has modified it recently. In this case, the variable
will be in that other CPU’s cache, but not in this CPU’s cache, which will therefore
incur an expensive cache miss (see Section C.1 for more detail). Such cache misses
form a major obstacle to CPU performance, as shown in Figure 3.8.

Quick Quiz 3.3: So have CPU designers also greatly reduced the overhead of cache misses?

3.1.6 1/0 Operations

A cache miss can be thought of as a CPU-to-CPU I/O operation, and as such is one
of the cheapest I/O operations available. I/O operations involving networking, mass
storage, or (worse yet) human beings pose much greater obstacles than the internal
obstacles called out in the prior sections, as illustrated by Figure 3.9.

This is one of the differences between shared-memory and distributed-system
parallelism: shared-memory parallel programs must normally deal with no obstacle
worse than a cache miss, while a distributed parallel program will typically incur the
larger network communication latencies. In both cases, the relevant latencies can be
thought of as a cost of communication—a cost that would be absent in a sequential
program. Therefore, the ratio between the overhead of the communication to that of
the actual work being performed is a key design parameter. A major goal of parallel
hardware design is to reduce this ratio as needed to achieve the relevant performance
and scalability goals. In turn, as will be seen in Chapter 6, a major goal of parallel
software design is to reduce the frequency of expensive operations like communications
cache misses.

32 CHAPTER 3. HARDWARE AND ITS HABITS

Please stay on the
line. Your call is very
important to us...

Figure 3.9: CPU Waits for I/O Completion

Of course, it is one thing to say that a given operation is an obstacle, and quite another
to show that the operation is a significant obstacle. This distinction is discussed in the
following sections.

3.2 Overheads

Don’t design bridges in ignorance of materials, and
don’t design low-level software in ignorance of the
underlying hardware.

Unknown

This section presents actual overheads of the obstacles to performance listed out in the
previous section. However, it is first necessary to get a rough view of hardware system
architecture, which is the subject of the next section.

3.2.1 Hardware System Architecture

Figure 3.10 shows a rough schematic of an eight-core computer system. Each die has a
pair of CPU cores, each with its cache, as well as an interconnect allowing the pair of
CPUs to communicate with each other. The system interconnect allows the four dies to
communicate with each other and with main memory.

Data moves through this system in units of “cache lines”, which are power-of-two
fixed-size aligned blocks of memory, usually ranging from 32 to 256 bytes in size.
When a CPU loads a variable from memory to one of its registers, it must first load
the cacheline containing that variable into its cache. Similarly, when a CPU stores a
value from one of its registers into memory, it must also load the cacheline containing
that variable into its cache, but must also ensure that no other CPU has a copy of that
cacheline.

For example, if CPU 0 were to write to a variable whose cacheline resided in CPU 7’s
cache, the following over-simplified sequence of events might ensue:

3.2. OVERHEADS 33

CPUO CPU 1 CPU 2 CPU3
Cache Cache Cache Cache
Interconnect Interconnect
~ =

Memory <—% System Interconnect %—> Memory

Z X
Interconnect Interconnect
Cache Cache Cache Cache
CPU 4 CPU5 CPU6 CPU7

Speed-of-Light Round-Trip Distance in Vacuum
for 1.8 GHz Clock Period (8 cm)

Figure 3.10: System Hardware Architecture

1. CPU 0 checks its local cache, and does not find the cacheline. It therefore records
the write in its store buffer.

2. A request for this cacheline is forwarded to CPU 0’s and 1’s interconnect, which
checks CPU 1°s local cache, and does not find the cacheline.

3. This request is forwarded to the system interconnect, which checks with the other
three dies, learning that the cacheline is held by the die containing CPU 6 and 7.

4. This request is forwarded to CPU 6’s and 7’s interconnect, which checks both
CPUs’ caches, finding the value in CPU 7’s cache.

5. CPU 7 forwards the cacheline to its interconnect, and also flushes the cacheline
from its cache.

a

CPU 6’s and 7’s interconnect forwards the cacheline to the system interconnect.

~

The system interconnect forwards the cacheline to CPU 0’s and 1’s interconnect.

*®

CPU 0’s and 1’s interconnect forwards the cacheline to CPU 0’s cache.

9. CPU 0 can now complete the write, updating the relevant portions of the newly
arrived cacheline from the value previously recorded in the store buffer.

Quick Quiz 3.4: This is a simplified sequence of events? How could it possibly be any more
complex? M

[Quick Quiz 3.5: Why is it necessary to flush the cacheline from CPU 7’s cache? W]

This simplified sequence is just the beginning of a discipline called cache-coherency
protocols [HP95, CSG99, MHS12, SHW11], which is discussed in more detail in
Appendix C. As can be seen in the sequence of events triggered by a CAS operation,
a single instruction can cause considerable protocol traffic, which can significantly
degrade your parallel program’s performance.

34 CHAPTER 3. HARDWARE AND ITS HABITS

Table 3.1: CPU 0 View of Synchronization Mechanisms on 8-Socket System With
Intel Xeon Platinum 8176 CPUs @ 2.10 GHz

Ratio
Operation Cost (ns) (cost/clock) CPUs
Clock period 0.5 1.0
Same-CPU CAS 7.0 14.6 0
Same-CPU lock 15.4 32.3 0
In-core blind CAS 7.2 15.2 224
In-core CAS 18.0 37.7 224
Oft-core blind CAS 47.5 99.8 1-27,225-251
Off-core CAS 101.9 214.0 1-27,225-251
Oft-socket blind CAS 148.8 312.5 28-111,252-335
Oft-socket CAS 4429 930.1 28-111,252-335
Cross-interconnect blind CAS 336.6 706.8 112-223,336-447
Cross-interconnect CAS 944.8 1,984.2 112-223,336-447
Off-System
Comms Fabric 5,000 10,500
Global Comms 195,000,000 409,500,000

Fortunately, if a given variable is being frequently read during a time interval during
which it is never updated, that variable can be replicated across all CPUs’ caches.
This replication permits all CPUs to enjoy extremely fast access to this read-mostly
variable. Chapter 9 presents synchronization mechanisms that take full advantage of
this important hardware read-mostly optimization.

3.2.2 Costs of Operations

The overheads of some common operations important to parallel programs are displayed
in Table 3.1. This system’s clock period rounds to 0.5 ns. Although it is not unusual
for modern microprocessors to be able to retire multiple instructions per clock period,
the operations’ costs are nevertheless normalized to a clock period in the third column,
labeled “Ratio”. The first thing to note about this table is the large values of many of
the ratios.

The same-CPU compare-and-swap (CAS) operation consumes about seven nanosec-
onds, a duration more than ten times that of the clock period. CAS is an atomic operation
in which the hardware compares the contents of the specified memory location to a
specified “old” value, and if they compare equal, stores a specified “new” value, in
which case the CAS operation succeeds. If they compare unequal, the memory location
keeps its (unexpected) value, and the CAS operation fails. The operation is atomic in
that the hardware guarantees that the memory location will not be changed between the
compare and the store. CAS functionality is provided by the lock ; cmpxchg instruction
on x86.

The “same-CPU” prefix means that the CPU now performing the CAS operation on a
given variable was also the last CPU to access this variable, so that the corresponding
cacheline is already held in that CPU’s cache. Similarly, the same-CPU lock operation
(a “round trip” pair consisting of a lock acquisition and release) consumes more than
fifteen nanoseconds, or more than thirty clock cycles. The lock operation is more

3.2. OVERHEADS 35

expensive than CAS because it requires two atomic operations on the lock data structure,
one for acquisition and the other for release.

In-core operations involving interactions between the hardware threads sharing a
single core are about the same cost as same-CPU operations. This should not be too
surprising, given that these two hardware threads also share the full cache hierarchy.

In the case of the blind CAS, the software specifies the old value without looking at
the memory location. This approach is appropriate when attempting to acquire a lock.
If the unlocked state is represented by zero and the locked state is represented by the
value one, then a CAS operation on the lock that specifies zero for the old value and one
for the new value will acquire the lock if it is not already held. The key point is that
there is only one access to the memory location, namely the CAS operation itself.

In contrast, a normal CAS operation’s old value is derived from some earlier load. For
example, to implement an atomic increment, the current value of that location is loaded
and that value is incremented to produce the new value. Then in the CAS operation, the
value actually loaded would be specified as the old value and the incremented value
as the new value. If the value had not been changed between the load and the CAS,
this would increment the memory location. However, if the value had in fact changed,
then the old value would not match, causing a miscompare that would result in the
CAS operation failing. The key point is that there are now two accesses to the memory
location, the load and the CAS.

Thus, it is not surprising that in-core blind CAS consumes only about seven nanosec-
onds, while in-core CAS consumes about 18 nanoseconds. The non-blind case’s extra
load does not come for free. That said, the overhead of these operations are similar to
single-CPU CAS and lock, respectively.

Quick Quiz 3.6: Table 3.1 shows CPU 0 sharing a core with CPU 224. Shouldn’t that instead
be CPU 177? A

An blind CAS involving CPUs in different cores but on the same socket consumes
almost fifty nanoseconds, or almost one hundred clock cycles. The code used for this
cache-miss measurement passes the cache line back and forth between a pair of CPUs,
so this cache miss is satisfied not from memory, but rather from the other CPU’s cache.
A non-blind CAS operation, which as noted earlier must look at the old value of the
variable as well as store a new value, consumes over one hundred nanoseconds, or
more than two hundred clock cycles. Think about this a bit. In the time required to
do one CAS operation, the CPU could have executed more than two hundred normal
instructions. This should demonstrate the limitations not only of fine-grained locking,
but of any other synchronization mechanism relying on fine-grained global agreement.

If the pair of CPUs are on different sockets, the operations are considerably more
expensive. A blind CAS operation consumes almost 150 nanoseconds, or more than three
hundred clock cycles. A normal CAS operation consumes more than 400 nanoseconds,
or almost one thousand clock cycles.

Worse yet, not all pairs of sockets are created equal. This particular system appears
to be constructed as a pair of four-socket components, with additional latency penalties
when the CPUs reside in different components. In this case, a blind CAS operation
consumes more than three hundred nanoseconds, or more than seven hundred clock
cycles. A CAS operation consumes almost a full microsecond, or almost two thousand
clock cycles.

36 CHAPTER 3. HARDWARE AND ITS HABITS

Table 3.2: Cache Geometry for 8-Socket System With Intel Xeon Platinum 8176 CPUs
@ 2.10GHz

Level Scope Line Size Sets Ways Size
LO Core 64 64 8 32K
L1 Core 64 64 8 32K
L2 Core 64 1024 16 1024K
L3 Socket 64 57,344 11 39,424K

Quick Quiz 3.7: Surely the hardware designers could be persuaded to improve this situation!
Why have they been content with such abysmal performance for these single-instruction
operations? H

Unfortunately, the high speed of within-core and within-socket communication does
not come for free. First, there are only two CPUs within a given core and only 56 within
a given socket, compared to 448 across the system. Second, as shown in Table 3.2,
the in-core caches are quite small compared to the in-socket caches, which are in turn
quite small compared to the 1.4 TB of memory configured on this system. Third, again
referring to the figure, the caches are organized as a hardware hash table with a limited
number of items per bucket. For example, the raw size of the L3 cache (“Size”) is
almost 40 MB, but each bucket (“Line”) can only hold 11 blocks of memory (“Ways”),
each of which can be at most 64 bytes (“Line Size”). This means that only 12 bytes of
memory (admittedly at carefully chosen addresses) are required to overflow this 40 MB
cache. On the other hand, equally careful choice of addresses might make good use of
the entire 40 MB.

Spatial locality of reference is clearly extremely important, as is spreading the data
across memory.

I/O operations are even more expensive. As shown in the “Comms Fabric” row,
high performance (and expensive!) communications fabric, such as InfiniBand or any
number of proprietary interconnects, has a latency of roughly five microseconds for an
end-to-end round trip, during which time more than ten thousand instructions might
have been executed. Standards-based communications networks often require some
sort of protocol processing, which further increases the latency. Of course, geographic
distance also increases latency, with the speed-of-light through optical fiber latency
around the world coming to roughly 195 milliseconds, or more than 400 million clock
cycles, as shown in the “Global Comms” row.

Quick Quiz 3.8: These numbers are insanely large! How can I possibly get my head around
them? W

3.2.3 Hardware Optimizations

It is only natural to ask how the hardware is helping, and the answer is “Quite a bit!”
One hardware optimization is large cachelines. This can provide a big performance
boost, especially when software is accessing memory sequentially. For example, given
a 64-byte cacheline and software accessing 64-bit variables, the first access will still be
slow due to speed-of-light delays (if nothing else), but the remaining seven can be quite
fast. However, this optimization has a dark side, namely false sharing, which happens
when different variables in the same cacheline are being updated by different CPUs,

3.2. OVERHEADS 37

Figure 3.11: Hardware and Software: On Same Side

resulting in a high cache-miss rate. Software can use the alignment directives available
in many compilers to avoid false sharing, and adding such directives is a common step
in tuning parallel software.

A second related hardware optimization is cache prefetching, in which the hardware
reacts to consecutive accesses by prefetching subsequent cachelines, thereby evading
speed-of-light delays for these subsequent cachelines. Of course, the hardware must use
simple heuristics to determine when to prefetch, and these heuristics can be fooled by
the complex data-access patterns in many applications. Fortunately, some CPU families
allow for this by providing special prefetch instructions. Unfortunately, the effectiveness
of these instructions in the general case is subject to some dispute.

A third hardware optimization is the store buffer, which allows a string of store
instructions to execute quickly even when the stores are to non-consecutive addresses
and when none of the needed cachelines are present in the CPU’s cache. The dark side
of this optimization is memory misordering, for which see Chapter 15.

A fourth hardware optimization is speculative execution, which can allow the hardware
to make good use of the store buffers without resulting in memory misordering. The
dark side of this optimization can be energy inefficiency and lowered performance if the
speculative execution goes awry and must be rolled back and retried. Worse yet, the
advent of Spectre and Meltdown [Hor18] made it apparent that hardware speculation
can also enable side-channel attacks that defeat memory-protection hardware so as to
allow unprivileged processes to read memory that they should not have access to. It is
clear that the combination of speculative execution and cloud computing needs more
than a bit of rework!

A fifth hardware optimization is large caches, allowing individual CPUs to operate
on larger datasets without incurring expensive cache misses. Although large caches
can degrade energy efficiency and cache-miss latency, the ever-growing cache sizes on
production microprocessors attests to the power of this optimization.

A final hardware optimization is read-mostly replication, in which data that is
frequently read but rarely updated is present in all CPUs’ caches. This optimization
allows the read-mostly data to be accessed exceedingly efficiently, and is the subject of
Chapter 9.

In short, hardware and software engineers are really on the same side, with both trying
to make computers go fast despite the best efforts of the laws of physics, as fancifully
depicted in Figure 3.11 where our data stream is trying its best to exceed the speed of
light. The next section discusses some additional things that the hardware engineers
might (or might not) be able to do, depending on how well recent research translates to

38 CHAPTER 3. HARDWARE AND ITS HABITS

practice. Software’s contribution to this noble goal is outlined in the remaining chapters
of this book.

3.3 Hardware Free Lunch?

The great trouble today is that there are too many
people looking for someone else to do something for
them. The solution to most of our troubles is to be
found in everyone doing something for themselves.

Henry Ford, updated

The major reason that concurrency has been receiving so much focus over the past few
years is the end of Moore’s-Law induced single-threaded performance increases (or
“free lunch” [Sut08]), as shown in Figure 2.1 on page 12. This section briefly surveys a
few ways that hardware designers might bring back the “free lunch”.

However, the preceding section presented some substantial hardware obstacles to
exploiting concurrency. One severe physical limitation that hardware designers face is
the finite speed of light. As noted in Figure 3.10 on page 33, light can manage only
about an 8-centimeters round trip in a vacuum during the duration of a 1.8 GHz clock
period. This distance drops to about 3 centimeters for a 5 GHz clock. Both of these
distances are relatively small compared to the size of a modern computer system.

To make matters even worse, electric waves in silicon move from three to thirty times
more slowly than does light in a vacuum, and common clocked logic constructs run still
more slowly, for example, a memory reference may need to wait for a local cache lookup
to complete before the request may be passed on to the rest of the system. Furthermore,
relatively low speed and high power drivers are required to move electrical signals
from one silicon die to another, for example, to communicate between a CPU and main
memory.

Quick Quiz 3.9: But individual electrons don’t move anywhere near that fast, even in
conductors!!! The electron drift velocity in a conductor under semiconductor voltage levels is
on the order of only one millimeter per second. What gives??? Wl

There are nevertheless some technologies (both hardware and software) that might
help improve matters:

1. 3D integration,

2. Novel materials and processes,

3. Substituting light for electricity,
4. Special-purpose accelerators, and

5. Existing parallel software.

Each of these is described in one of the following sections.

3.3. HARDWARE FREE LUNCH? 39

70 UTZ

| | [=—=

3cm 1.5¢cm

Figure 3.12: Latency Benefit of 3D Integration

3.3.1 3D Integration

3-dimensional integration (3DI) is the practice of bonding very thin silicon dies to
each other in a vertical stack. This practice provides potential benefits, but also poses
significant fabrication challenges [KniOS8].

Perhaps the most important benefit of 3DI is decreased path length through the system,
as shown in Figure 3.12. A 3-centimeter silicon die is replaced with a stack of four
1.5-centimeter dies, in theory decreasing the maximum path through the system by a
factor of two, keeping in mind that each layer is quite thin. In addition, given proper
attention to design and placement, long horizontal electrical connections (which are
both slow and power hungry) can be replaced by short vertical electrical connections,
which are both faster and more power efficient.

However, delays due to levels of clocked logic will not be decreased by 3D integration,
and significant manufacturing, testing, power-supply, and heat-dissipation problems
must be solved for 3D integration to reach production while still delivering on its
promise. The heat-dissipation problems might be solved using semiconductors based
on diamond, which is a good conductor for heat, but an electrical insulator. That said, it
remains difficult to grow large single diamond crystals, to say nothing of slicing them
into wafers. In addition, it seems unlikely that any of these technologies will be able to
deliver the exponential increases to which some people have become accustomed. That
said, they may be necessary steps on the path to the late Jim Gray’s “smoking hairy golf
balls” [Gra02].

3.3.2 Novel Materials and Processes

Stephen Hawking is said to have claimed that semiconductor manufacturers have but
two fundamental problems: (1) the finite speed of light and (2) the atomic nature of
matter [Gar0Q7]. It is possible that semiconductor manufacturers are approaching these
limits, but there are nevertheless a few avenues of research and development focused on
working around these fundamental limits.

One workaround for the atomic nature of matter are so-called “high-K dielectric’
materials, which allow larger devices to mimic the electrical properties of infeasibly
small devices. These materials pose some severe fabrication challenges, but nevertheless
may help push the frontiers out a bit farther. Another more-exotic workaround stores
multiple bits in a single electron, relying on the fact that a given electron can exist at a
number of energy levels. It remains to be seen if this particular approach can be made
to work reliably in production semiconductor devices.

Another proposed workaround is the “quantum dot” approach that allows much
smaller device sizes, but which is still in the research stage.

)

40 CHAPTER 3. HARDWARE AND ITS HABITS

One challenge is that many recent hardware-device-level breakthroughs require very
tight control of which atoms are placed where [Kell7]. It therefore seems likely that
whoever finds a good way to hand-place atoms on each of the billions of devices on a
chip will have most excellent bragging rights, if nothing else!

3.3.3 Light, Not Electrons

Although the speed of light would be a hard limit, the fact is that semiconductor devices
are limited by the speed of electricity rather than that of light, given that electric waves
in semiconductor materials move at between 3 % and 30 % of the speed of light in a
vacuum. The use of copper connections on silicon devices is one way to increase the
speed of electricity, and it is quite possible that additional advances will push closer
still to the actual speed of light. In addition, there have been some experiments with
tiny optical fibers as interconnects within and between chips, based on the fact that the
speed of light in glass is more than 60 % of the speed of light in a vacuum. One obstacle
to such optical fibers is the inefficiency conversion between electricity and light and
vice versa, resulting in both power-consumption and heat-dissipation problems.

That said, absent some fundamental advances in the field of physics, any exponential
increases in the speed of data flow will be sharply limited by the actual speed of light in
a vacuum.

3.3.4 Special-Purpose Accelerators

A general-purpose CPU working on a specialized problem is often spending significant
time and energy doing work that is only tangentially related to the problem at hand. For
example, when taking the dot product of a pair of vectors, a general-purpose CPU will
normally use a loop (possibly unrolled) with a loop counter. Decoding the instructions,
incrementing the loop counter, testing this counter, and branching back to the top of the
loop are in some sense wasted effort: the real goal is instead to multiply corresponding
elements of the two vectors. Therefore, a specialized piece of hardware designed
specifically to multiply vectors could get the job done more quickly and with less energy
consumed.

This is in fact the motivation for the vector instructions present in many commodity
microprocessors. Because these instructions operate on multiple data items simultane-
ously, they would permit a dot product to be computed with less instruction-decode and
loop overhead.

Similarly, specialized hardware can more efficiently encrypt and decrypt, compress
and decompress, encode and decode, and many other tasks besides. Unfortunately, this
efficiency does not come for free. A computer system incorporating this specialized
hardware will contain more transistors, which will consume some power even when not
in use. Software must be modified to take advantage of this specialized hardware, and
this specialized hardware must be sufficiently generally useful that the high up-front
hardware-design costs can be spread over enough users to make the specialized hardware
affordable. In part due to these sorts of economic considerations, specialized hardware
has thus far appeared only for a few application areas, including graphics processing
(GPUgs), vector processors (MMX, SSE, and VMX instructions), and, to a lesser extent,
encryption.

Unlike the server and PC arena, smartphones have long used a wide variety of
hardware accelerators. These hardware accelerators are often used for media decoding,

3.4. SOFTWARE DESIGN IMPLICATIONS 41

so much so that a high-end MP3 player might be able to play audio for several minutes—
with its CPU fully powered off the entire time. The purpose of these accelerators is
to improve energy efficiency and thus extend battery life: special purpose hardware
can often compute more efficiently than can a general-purpose CPU. This is another
example of the principle called out in Section 2.2.3: Generality is almost never free.

Nevertheless, given the end of Moore’s-Law-induced single-threaded performance
increases, it seems safe to assume that increasing varieties of special-purpose hardware
will appear.

3.3.5 Existing Parallel Software

Although multicore CPUs seem to have taken the computing industry by surprise, the
fact remains that shared-memory parallel computer systems have been commercially
available for more than a quarter century. This is more than enough time for significant
parallel software to make its appearance, and it indeed has. Parallel operating systems
are quite commonplace, as are parallel threading libraries, parallel relational database
management systems, and parallel numerical software. Use of existing parallel software
can go a long ways towards solving any parallel-software crisis we might encounter.

Perhaps the most common example is the parallel relational database management
system. It is not unusual for single-threaded programs, often written in high-level
scripting languages, to access a central relational database concurrently. In the resulting
highly parallel system, only the database need actually deal directly with parallelism. A
very nice trick when it works!

3.4 Software Design Implications

One ship drives east and another west
While the self-same breezes blow;
"Tis the set of the sail and not the gail
That bids them where to go.

Ella Wheeler Wilcox

The values of the ratios in Table 3.1 are critically important, as they limit the efficiency
of a given parallel application. To see this, suppose that the parallel application uses
CAS operations to communicate among threads. These CAS operations will typically
involve a cache miss, that is, assuming that the threads are communicating primarily
with each other rather than with themselves. Suppose further that the unit of work
corresponding to each CAS communication operation takes 300 ns, which is sufficient
time to compute several floating-point transcendental functions. Then about half of the
execution time will be consumed by the CAS communication operations! This in turn
means that a two-CPU system running such a parallel program would run no faster than
a sequential implementation running on a single CPU.

The situation is even worse in the distributed-system case, where the latency of a
single communications operation might take as long as thousands or even millions
of floating-point operations. This illustrates how important it is for communications
operations to be extremely infrequent and to enable very large quantities of processing.

Quick Quiz 3.10: Given that distributed-systems communication is so horribly expensive,
why does anyone bother with such systems? H

42 CHAPTER 3. HARDWARE AND ITS HABITS

The lesson should be quite clear: parallel algorithms must be explicitly designed with
these hardware properties firmly in mind. One approach is to run nearly independent
threads. The less frequently the threads communicate, whether by atomic operations,
locks, or explicit messages, the better the application’s performance and scalability will
be. This approach will be touched on in Chapter 5, explored in Chapter 6, and taken to
its logical extreme in Chapter 8.

Another approach is to make sure that any sharing be read-mostly, which allows the
CPUs’ caches to replicate the read-mostly data, in turn allowing all CPUs fast access.
This approach is touched on in Section 5.2.3, and explored more deeply in Chapter 9.

In short, achieving excellent parallel performance and scalability means striving for
embarrassingly parallel algorithms and implementations, whether by careful choice of
data structures and algorithms, use of existing parallel applications and environments,
or transforming the problem into an embarrassingly parallel form.

Quick Quiz 3.11: OK, if we are going to have to apply distributed-programming techniques
to shared-memory parallel programs, why not just always use these distributed techniques and
dispense with shared memory? W

So, to sum up:

1. The good news is that multicore systems are inexpensive and readily available.

2. More good news: The overhead of many synchronization operations is much lower
than it was on parallel systems from the early 2000s.

3. The bad news is that the overhead of cache misses is still high, especially on large
systems.

The remainder of this book describes ways of handling this bad news.

In particular, Chapter 4 will cover some of the low-level tools used for parallel
programming, Chapter 5 will investigate problems and solutions to parallel counting,
and Chapter 6 will discuss design disciplines that promote performance and scalability.

You are only as good as your tools, and your tools are
only as good as you are.

Unknown

Chapter 4

Tools of the Trade

This chapter provides a brief introduction to some basic tools of the parallel-programming
trade, focusing mainly on those available to user applications running on operating
systems similar to Linux. Section 4.1 begins with scripting languages, Section 4.2
describes the multi-process parallelism supported by the POSIX API and touches on
POSIX threads, Section 4.3 presents analogous operations in other environments, and
finally, Section 4.4 helps to choose the tool that will get the job done.

Quick Quiz 4.1: You call these tools??? They look more like low-level synchronization
primitives to me! H

Please note that this chapter provides but a brief introduction. More detail is available
from the references (and from the Internet), and more information will be provided in
later chapters.

4.1 Scripting Languages

The supreme excellence is simplicity.

Henry Wadsworth Longfellow, abbreviated

The Linux shell scripting languages provide simple but effective ways of managing
parallelism. For example, suppose that you had a program compute_it that you needed
to run twice with two different sets of arguments. This can be accomplished using
UNIX shell scripting as follows:

compute_it 1 > compute_it.l.out &
compute_it 2 > compute_it.2.out &
wait

cat compute_it.1.out

cat compute_it.2.out

[S TR R

Lines 1 and 2 launch two instances of this program, redirecting their output to two
separate files, with the & character directing the shell to run the two instances of the
program in the background. Line 3 waits for both instances to complete, and lines 4
and 5 display their output. The resulting execution is as shown in Figure 4.1: the two
instances of compute_it execute in parallel, wait completes after both of them do,
and then the two instances of cat execute sequentially.

43

44 CHAPTER 4. TOOLS OF THE TRADE

compute_it 1 > compute_it 2 >
compute_it.l.out & compute_it.2.out &

’cat compute_it.1l.out ‘

’cat compute_it.2.out ‘

Figure 4.1: Execution Diagram for Parallel Shell Execution

Quick Quiz 4.2: But this silly shell script isn’t a real parallel program! Why bother with such
trivia??? W

Quick Quiz 4.3: Is there a simpler way to create a parallel shell script? If so, how? If not,
why not?

For another example, the make software-build scripting language provides a —j option
that specifies how much parallelism should be introduced into the build process. Thus,
typing make -j4 when building a Linux kernel specifies that up to four build steps be
executed concurrently.

It is hoped that these simple examples convince you that parallel programming need
not always be complex or difficult.

Quick Quiz 4.4: But if script-based parallel programming is so easy, why bother with anything
else? M

4.2 POSIX Multiprocessing

A camel is a horse designed by committee.

Unknown

This section scratches the surface of the POSIX environment, including pthreads [Ope97],
as this environment is readily available and widely implemented. Section 4.2.1 provides
a glimpse of the POSIX fork() and related primitives, Section 4.2.2 touches on thread
creation and destruction, Section 4.2.3 gives a brief overview of POSIX locking, and,
finally, Section 4.2.4 describes a specific lock which can be used for data that is read by
many threads and only occasionally updated.

4.2.1 POSIX Process Creation and Destruction

Processes are created using the fork() primitive, they may be destroyed using the
kill () primitive, they may destroy themselves using the exit () primitive. A process

4.2. POSIX MULTIPROCESSING 45

Listing 4.1: Using the fork () Primitive

1 pid = fork();
2 if (pid == 0) {
3 /* child */
4 } else if (pid < 0) {
/* parent, upon error */
perror("fork") ;
exit (EXIT_FAILURE);
} else {
/* parent, pid == child ID */

S v ®» 9 o w

}

Listing 4.2: Using the wait () Primitive

| static __inline__ void waitall(void)

2 {

3 int pid;

4 int status;

5

6 for (53) {

7 pid = wait(&status);

8 if (pid == -1) {

9 if (errno == ECHILD)
10 break;

11 perror("wait");

12 exit (EXIT_FAILURE);
13 }

14 ¥

15 ¥

executing a fork () primitive is said to be the “parent” of the newly created process. A
parent may wait on its children using the wait () primitive.

Please note that the examples in this section are quite simple. Real-world applications
using these primitives might need to manipulate signals, file descriptors, shared memory
segments, and any number of other resources. In addition, some applications need to
take specific actions if a given child terminates, and might also need to be concerned
with the reason that the child terminated. These issues can of course add substantial
complexity to the code. For more information, see any of a number of textbooks on the
subject [Ste92, Weil3].

If fork() succeeds, it returns twice, once for the parent and again for the child.
The value returned from fork () allows the caller to tell the difference, as shown in
Listing 4.1 (forkjoin.c). Line 1 executes the fork () primitive, and saves its return
value in local variable pid. Line 2 checks to see if pid is zero, in which case, this is the
child, which continues on to execute line 3. As noted earlier, the child may terminate
via the exit () primitive. Otherwise, this is the parent, which checks for an error return
from the fork () primitive on line 4, and prints an error and exits on lines 5-7 if so.
Otherwise, the fork () has executed successfully, and the parent therefore executes
line 9 with the variable pid containing the process ID of the child.

The parent process may use the wait () primitive to wait for its children to complete.
However, use of this primitive is a bit more complicated than its shell-script counterpart,
as each invocation of wait () waits for but one child process. It is therefore customary
to wrap wait () into a function similar to the waitall () function shown in Listing 4.2
(api-pthreads.h), with this waitall() function having semantics similar to the
shell-script wait command. Each pass through the loop spanning lines 6—14 waits on
one child process. Line 7 invokes the wait () primitive, which blocks until a child
process exits, and returns that child’s process ID. If the process ID is instead —1, this
indicates that the wait () primitive was unable to wait on a child. If so, line 9 checks

46 CHAPTER 4. TOOLS OF THE TRADE

Listing 4.3: Processes Created Via fork () Do Not Share Memory

1 int x = 03

2

3 int main(int argc, char *argv[])

4 {

5 int pid;

6

7 pid = fork();

8 if (pid == 0) { /* child */

9 x =1;

10 printf("Child process set x=1\n");
11 exit (EXIT_SUCCESS);

12 }

13 if (pid < 0) { /* parent, upon error */
14 perror("fork");

15 exit (EXIT_FAILURE);

16 }

17

18 /* parent */

19

20 waitall(Q);

21 printf ("Parent process sees x=%d\n", x);
22

23 return EXIT_SUCCESS;

2% }

for the ECHILD errno, which indicates that there are no more child processes, so that
line 10 exits the loop. Otherwise, lines 11 and 12 print an error and exit.

Quick Quiz 4.5: Why does this wait () primitive need to be so complicated? Why not just
make it work like the shell-script wait does? W

It is critically important to note that the parent and child do not share memory. This
is illustrated by the program shown in Listing 4.3 (forkjoinvar. c), in which the child
sets a global variable x to 1 on line 9, prints a message on line 10, and exits on line 11.
The parent continues at line 20, where it waits on the child, and on line 21 finds that its
copy of the variable x is still zero. The output is thus as follows:

Child process set x=1
Parent process sees x=0

[Quick Quiz 4.6: Isn’t there a lot more to fork () and wait () than discussed here? W J

The finest-grained parallelism requires shared memory, and this is covered in
Section 4.2.2. That said, shared-memory parallelism can be significantly more complex
than fork-join parallelism.

4.2.2 POSIX Thread Creation and Destruction

To create a thread within an existing process, invoke the pthread_create () primitive,
for example, as shown on lines 16 and 17 of Listing 4.4 (pcreate. c). The first argument
is a pointer to a pthread_t in which to store the ID of the thread to be created, the
second NULL argument is a pointer to an optional pthread_attr_t, the third argument
is the function (in this case, mythread ()) that is to be invoked by the new thread, and
the last NULL argument is the argument that will be passed to mythread.

In this example, mythread() simply returns, but it could instead call pthread_
exit Q).

4.2. POSIX MULTIPROCESSING 47

Listing 4.4: Threads Created Via pthread_create () Share Memory

1 int x = 03

2

3 void *mythread(void *arg)

4 {

5 x = 1;

6 printf("Child process set x=1\n");
7 return NULL;

8}

9
10 int main(int argc, char *argv([])

n {

12 int en;

13 pthread_t tid;

14 void *vp;

15

16 if ((en = pthread_create(&tid, NULL,

17 mythread, NULL)) != 0) {
18 fprintf (stderr, "pthread_create: %s\n", strerror(en));
19 exit (EXIT_FAILURE);

20 }

21

2 /* parent */

23

2% if ((en = pthread_join(tid, &vp)) !'= 0) {

25 fprintf (stderr, "pthread_join: %s\n", strerror(en));
2% exit (EXIT_FAILURE);

27 }

28 printf ("Parent process sees x=%d\n", x);

29

30 return EXIT_SUCCESS;

31}

Quick Quiz 4.7: If the mythread () function in Listing 4.4 can simply return, why bother
with pthread_exit ()? W

The pthread_join() primitive, shown on line 24, is analogous to the fork-join
wait () primitive. It blocks until the thread specified by the tid variable completes
execution, either by invoking pthread_exit () or by returning from the thread’s
top-level function. The thread’s exit value will be stored through the pointer passed as
the second argument to pthread_join(). The thread’s exit value is either the value
passed to pthread_exit () or the value returned by the thread’s top-level function,
depending on how the thread in question exits.

The program shown in Listing 4.4 produces output as follows, demonstrating that
memory is in fact shared between the two threads:

Child process set x=1
Parent process sees x=1

Note that this program carefully makes sure that only one of the threads stores a value
to variable x at a time. Any situation in which one thread might be storing a value to a
given variable while some other thread either loads from or stores to that same variable
is termed a “data race”. Because the C language makes no guarantee that the results of
a data race will be in any way reasonable, we need some way of safely accessing and
modifying data concurrently, such as the locking primitives discussed in the following
section.

Quick Quiz 4.8: If the C language makes no guarantees in presence of a data race, then why
does the Linux kernel have so many data races? Are you trying to tell me that the Linux kernel
is completely broken??? W

48 CHAPTER 4. TOOLS OF THE TRADE

4.2.3 POSIX Locking

The POSIX standard allows the programmer to avoid data races via “POSIX locking”.
POSIX locking features a number of primitives, the most fundamental of which are
pthread_mutex_lock() and pthread_mutex_unlock(). These primitives operate
on locks, which are of type pthread_mutex_t. These locks may be declared statically
and initialized with PTHREAD_MUTEX_INITIALIZER, or they may be allocated dynami-
cally and initialized using the pthread_mutex_init () primitive. The demonstration
code in this section will take the former course.

The pthread_mutex_lock() primitive “acquires” the specified lock, and the
pthread_mutex_unlock() “releases” the specified lock. Because these are “exclusive’
locking primitives, only one thread at a time may “hold” a given lock at a given time.
For example, if a pair of threads attempt to acquire the same lock concurrently, one of
the pair will be “granted” the lock first, and the other will wait until the first thread
releases the lock. A simple and reasonably useful programming model permits a given
data item to be accessed only while holding the corresponding lock [Hoa74].

1

[Quick Quiz 4.9: What if I want several threads to hold the same lock at the same time? W]

This exclusive-locking property is demonstrated using the code shown in Listing 4.5
(lock.c). Line 1 defines and initializes a POSIX lock named lock_a, while line 2
similarly defines and initializes a lock named lock_b. Line 4 defines and initializes a
shared variable x.

Lines 6-33 define a function lock_reader () which repeatedly reads the shared
variable x while holding the lock specified by arg. Line 12 casts arg to a pointer
to a pthread_mutex_t, as required by the pthread_mutex_lock() and pthread_
mutex_unlock() primitives.

Quick Quiz 4.10: Why not simply make the argument to lock_reader () on line 6 of
Listing 4.5 be a pointer to a pthread_mutex_t? H

Quick Quiz 4.11: What is the READ_ONCE () on lines 20 and 47 and the WRITE_ONCE () on
line 47 of Listing 4.5? W

Lines 14-18 acquire the specified pthread_mutex_t, checking for errors and exiting
the program if any occur. Lines 19-26 repeatedly check the value of x, printing the
new value each time that it changes. Line 25 sleeps for one millisecond, which allows
this demonstration to run nicely on a uniprocessor machine. Lines 27-31 release
the pthread_mutex_t, again checking for errors and exiting the program if any
occur. Finally, line 32 returns NULL, again to match the function type required by
pthread_create().

Quick Quiz 4.12: Writing four lines of code for each acquisition and release of a pthread_
mutex_t sure seems painful! Isn’t there a better way?

Lines 35-56 of Listing 4.5 show lock_writer (), which periodically updates the
shared variable x while holding the specified pthread_mutex_t. As with lock_
reader (), line 39 casts arg to a pointer to pthread_mutex_t, lines 4145 acquire
the specified lock, and lines 50-54 release it. While holding the lock, lines 46—49
increment the shared variable x, sleeping for five milliseconds between each increment.
Finally, lines 50-54 release the lock.

Listing 4.6 shows a code fragment that runs lock_reader () and lock_writer() as
threads using the same lock, namely, lock_a. Lines 2—6 create a thread running lock_

4.2. POSIX MULTIPROCESSING

Listing 4.5: Demonstration of Exclusive Locks

pthread_mutex_t lock_a = PTHREAD_MUTEX_INITIALIZER;

1

2 pthread_mutex_t lock_b = PTHREAD_MUTEX_INITIALIZER;

3

4 int x = 0;

5

6 void *lock_reader(void *arg)

7 {

8 int en;

9 int i;

10 int newx = -1;

11 int oldx = -1;

12 pthread_mutex_t *pmlp = (pthread_mutex_t *)arg;
13

14 if ((en = pthread_mutex_lock(pmlp)) != 0) {

15 fprintf (stderr, "lock_reader:pthread_mutex_lock: %s\n",
16 strerror(en));

17 exit (EXIT_FAILURE);

18 }

19 for (i = 0; i < 100; i++) {

20 newx = READ_ONCE(x);

21 if (newx != oldx) {

2 printf ("lock_reader(): x = %d\n", newx);
23 }

24 oldx = newx;

25 poll(NULL, 0, 1);

26 }

27 if ((en = pthread_mutex_unlock(pmlp)) != 0) {
28 fprintf (stderr, "lock_reader:pthread_mutex_unlock: %s\n",
29 strerror(en));

30 exit (EXIT_FAILURE);

31 }

32 return NULL;

3}

34

35 void *lock_writer(void *arg)

36 {

37 int en;

38 int i;

39 pthread_mutex_t *pmlp = (pthread_mutex_t *)arg;
40

41 if ((en = pthread_mutex_lock(pmlp)) != 0) {

2 fprintf (stderr, "lock_writer:pthread_mutex_lock: %s\n",
43 strerror(en));

44 exit (EXIT_FAILURE);

45 }

46 for (i = 0; i < 3; i++) {

47 WRITE_ONCE(x, READ_ONCE(x) + 1);

48 poll(NULL, 0, 5);

49 }

50 if ((en = pthread_mutex_unlock(pmlp)) != 0) {
51 fprintf (stderr, "lock_writer:pthread_mutex_unlock: %s\n",
52 strerror(en));

53 exit (EXIT_FAILURE);

54 ¥

55 return NULL;

50 CHAPTER 4. TOOLS OF THE TRADE

Listing 4.6: Demonstration of Same Exclusive Lock

printf("Creating two threads using same lock:\n");

1

2 en = pthread_create(&tidl, NULL, lock_reader, &lock_a);

3 if (en '= 0) {

4 fprintf (stderr, "pthread_create: %s\n", strerror(en));
5 exit (EXIT_FAILURE);

6 }

7 en = pthread_create(&tid2, NULL, lock_writer, &lock_a);

3 if (en !'= 0) {

9 fprintf (stderr, "pthread_create: %s\n", strerror(en));
10 exit (EXIT_FAILURE);

11 }

12 if ((en = pthread_join(tidl, &vp)) != 0) {

13 fprintf (stderr, "pthread_join: %s\n", strerror(en));
14 exit (EXIT_FAILURE);

15 }

16 if ((en = pthread_join(tid2, &vp)) != 0) {

17 fprintf (stderr, "pthread_join: %s\n", strerror(en));
18 exit (EXIT_FAILURE);

19 }

Listing 4.7: Demonstration of Different Exclusive Locks

1 printf ("Creating two threads w/different locks:\n");

2 x = 0;

3 en = pthread_create(&tidl, NULL, lock_reader, &lock_a);

4 if (en '= 0) {

5 fprintf (stderr, "pthread_create: %s\n", strerror(en));
6 exit (EXIT_FAILURE);

7 }

8 en = pthread_create(&tid2, NULL, lock_writer, &lock_b);

9 if (en !'= 0) {

10 fprintf (stderr, "pthread_create: %s\n", strerror(en));
11 exit (EXIT_FAILURE);

12 }

13 if ((en = pthread_join(tidl, &vp)) != 0) {

14 fprintf (stderr, "pthread_join: %s\n", strerror(en));
15 exit (EXIT_FAILURE);

16 }

17 if ((en = pthread_join(tid2, &vp)) != 0) {

18 fprintf (stderr, "pthread_join: %s\n", strerror(en));
19 exit (EXIT_FAILURE);

20 }

reader (), and then lines 7-11 create a thread running lock_writer (). Lines 12-19
wait for both threads to complete. The output of this code fragment is as follows:

Creating two threads using same lock:
lock_reader(): x = 0

Because both threads are using the same lock, the lock_reader () thread cannot
see any of the intermediate values of x produced by lock_writer () while holding the
lock.

Quick Quiz 4.13: Is “x = 0” the only possible output from the code fragment shown in
Listing 4.6? If so, why? If not, what other output could appear, and why? H

Listing 4.7 shows a similar code fragment, but this time using different locks: lock_
a for lock_reader() and lock_b for lock_writer(). The output of this code
fragment is as follows:

Creating two threads w/different locks:
lock_reader(): x = 0

lock_reader(): x = 1
lock_reader(): x = 2
lock_reader(): x = 3

4.2. POSIX MULTIPROCESSING 51

Because the two threads are using different locks, they do not exclude each other, and
can run concurrently. The lock_reader () function can therefore see the intermediate
values of x stored by lock_writer().

Quick Quiz 4.14: Using different locks could cause quite a bit of confusion, what with
threads seeing each others’ intermediate states. So should well-written parallel programs restrict
themselves to using a single lock in order to avoid this kind of confusion? H

Quick Quiz 4.15: In the code shown in Listing 4.7, is lock_reader () guaranteed to see all
the values produced by lock_writer () ? Why or why not? W

Quick Quiz 4.16: Wait a minute here!!! Listing 4.6 didn’t initialize shared variable x, so why
does it need to be initialized in Listing 4.7? W

Although there is quite a bit more to POSIX exclusive locking, these primitives
provide a good start and are in fact sufficient in a great many situations. The next section
takes a brief look at POSIX reader-writer locking.

4.2.4 POSIX Reader-Writer Locking

The POSIX API provides a reader-writer lock, which is represented by a pthread_
rwlock_t. As with pthread_mutex_t, pthread_rwlock_t may be statically initial-
ized via PTHREAD_RWLOCK_INITIALIZER or dynamically initialized via the pthread_
rwlock_init () primitive. The pthread_rwlock_rdlock() primitive read-acquires
the specified pthread_rwlock_t, the pthread_rwlock_wrlock() primitive write-
acquires it, and the pthread_rwlock_unlock() primitive releases it. Only a single
thread may write-hold a given pthread_rwlock_t at any given time, but multiple
threads may read-hold a given pthread_rwlock_t, at least while there is no thread
currently write-holding it.

As you might expect, reader-writer locks are designed for read-mostly situations. In
these situations, a reader-writer lock can provide greater scalability than can an exclusive
lock because the exclusive lock is by definition limited to a single thread holding the
lock at any given time, while the reader-writer lock permits an arbitrarily large number
of readers to concurrently hold the lock. However, in practice, we need to know how
much additional scalability is provided by reader-writer locks.

Listing 4.8 (rwlockscale.c) shows one way of measuring reader-writer lock
scalability. Line 1 shows the definition and initialization of the reader-writer lock, line 2
shows the holdtime argument controlling the time each thread holds the reader-writer
lock, line 3 shows the thinktime argument controlling the time between the release of
the reader-writer lock and the next acquisition, line 4 defines the readcounts array
into which each reader thread places the number of times it acquired the lock, and line 5
defines the nreadersrunning variable, which determines when all reader threads have
started running.

Lines 7-10 define goflag, which synchronizes the start and the end of the test. This
variable is initially set to GOFLAG_INIT, then set to GOFLAG_RUN after all the reader
threads have started, and finally set to GOFLAG_STOP to terminate the test run.

Lines 1244 define reader (), which is the reader thread. Line 19 atomically
increments the nreadersrunning variable to indicate that this thread is now running,
and lines 20-22 wait for the test to start. The READ_ONCE() primitive forces the
compiler to fetch goflag on each pass through the loop—the compiler would otherwise
be within its rights to assume that the value of goflag would never change.

52 CHAPTER 4. TOOLS OF THE TRADE

Listing 4.8: Measuring Reader-Writer Lock Scalability

I pthread_rwlock_t rwl = PTHREAD_RWLOCK_INITIALIZER;
2 unsigned long holdtime = O;

3 unsigned long thinktime = 0;

4 long long *readcounts;

5 int nreadersrunning = O;
6
7
8
9

#define GOFLAG_INIT O
#define GOFLAG_RUN 1
#define GOFLAG_STOP 2

10 char goflag = GOFLAG_INIT;

1

12 void *reader(void *arg)

13 {

14 int en;

15 int i;

16 long long loopcnt = 0;

17 long me = (long)arg;

18

19 __sync_fetch_and_add(&nreadersrunning, 1);

20 while (READ_ONCE(goflag) == GOFLAG_INIT) {

21 continue;

22 }

23 while (READ_ONCE(goflag) == GOFLAG_RUN) {

24 if ((en = pthread_rwlock_rdlock(&rwl)) != 0) {
25 fprintf (stderr,

26 "pthread_rwlock_rdlock: %s\n", strerror(en));
27 exit (EXIT_FAILURE);

28 }

29 for (i = 1; i < holdtime; i++) {

30 wait_microseconds(1);

31 }

32 if ((en = pthread_rwlock_unlock(&rwl)) != 0) {
33 fprintf (stderr,

34 "pthread_rwlock_unlock: %s\n", strerror(en));
35 exit (EXIT_FAILURE);

36 }

37 for (i = 1; i < thinktime; i++) {

38 wait_microseconds(1);

39 }

40 loopcnt++;

41 ¥

42 readcounts[me] = loopcnt;

43 return NULL;

4 ¥

4.2. POSIX MULTIPROCESSING 53

10

ideal 10000us |

Critical Section Performance

0.0001 | | | | | | | |
0 50 100 150 200 250 300 350 400 450

Number of CPUs (Threads)

Figure 4.2: Reader-Writer Lock Scalability vs. Microseconds in Critical Section on
8-Socket System With Intel Xeon Platinum 8176 CPUs @ 2.10GHz

Quick Quiz 4.17: Instead of using READ_ONCE () everywhere, why not just declare goflag
as volatile on line 10 of Listing 4.8? W

Quick Quiz 4.18: READ_ONCE() only affects the compiler, not the CPU. Don’t we also need
memory barriers to make sure that the change in goflag’s value propagates to the CPU in a
timely fashion in Listing 4.87 W

Quick Quiz 4.19: Would it ever be necessary to use READ_ONCE () when accessing a per-thread
variable, for example, a variable declared using GCC’s __thread storage class? Wl

The loop spanning lines 23—41 carries out the performance test. Lines 24-28 acquire
the lock, lines 29-31 hold the lock for the specified number of microseconds, lines 32—-36
release the lock, and lines 37-39 wait for the specified number of microseconds before
re-acquiring the lock. Line 40 counts this lock acquisition.

Line 42 moves the lock-acquisition count to this thread’s element of the
readcounts[] array, and line 43 returns, terminating this thread.

Figure 4.2 shows the results of running this test on a 224-core Xeon system with two
hardware threads per core for a total of 448 software-visible CPUs. The thinktime
parameter was zero for all these tests, and the holdtime parameter set to values ranging
from one microsecond (“1us” on the graph) to 10,000 microseconds (“10000us” on the
graph). The actual value plotted is:

Ly

NL, “4.1)

where N is the number of threads, Ly is the number of lock acquisitions by N threads,
and L is the number of lock acquisitions by a single thread. Given ideal hardware and
software scalability, this value will always be 1.0.

As can be seen in the figure, reader-writer locking scalability is decidedly non-ideal,
especially for smaller sizes of critical sections. To see why read-acquisition can be
so slow, consider that all the acquiring threads must update the pthread_rwlock_t

54 CHAPTER 4. TOOLS OF THE TRADE

data structure. Therefore, if all 448 executing threads attempt to read-acquire the
reader-writer lock concurrently, they must update this underlying pthread_rwlock_t
one at a time. One lucky thread might do so almost immediately, but the least-lucky
thread must wait for all the other 447 threads to do their updates. This situation will
only get worse as you add CPUs. Note also the logscale y-axis. Even though the
10,000 microsecond trace appears quite ideal, it has in fact degraded by about 10 % from
ideal.

[Quick Quiz 4.20: Isn’t comparing against single-CPU throughput a bit harsh? W]

Quick Quiz 4.21: But one microsecond is not a particularly small size for a critical section.
What do I do if I need a much smaller critical section, for example, one containing only a few
instructions? W

Quick Quiz 4.22: The system used is a few years old, and new hardware should be faster. So
why should anyone worry about reader-writer locks being slow? H

Despite these limitations, reader-writer locking is quite useful in many cases, for
example when the readers must do high-latency file or network I/O. There are alternatives,
some of which will be presented in Chapters 5 and 9.

4.2.5 Atomic Operations (GCC Classic)

Figure 4.2 shows that the overhead of reader-writer locking is most severe for the smallest
critical sections, so it would be nice to have some other way of protecting tiny critical
sections. One such way uses atomic operations. We have seen an atomic operation
already, namely the __sync_fetch_and_add () primitive on line 19 of Listing 4.8.
This primitive atomically adds the value of its second argument to the value referenced
by its first argument, returning the old value (which was ignored in this case). If a pair
of threads concurrently execute __sync_fetch_and_add () on the same variable, the
resulting value of the variable will include the result of both additions.

The GNU C compiler offers a number of additional atomic operations, includ-
ing __sync_fetch_and_sub(), __sync_fetch_and_or(), __sync_fetch_and_
and(), __sync_fetch_and_xor(), and __sync_fetch_and_nand(), all of which
return the old value. If you instead need the new value, you can instead use the __
sync_add_and_fetch(), __sync_sub_and_fetch(), __sync_or_and_fetch(),
__sync_and_and_fetch(), __sync_xor_and_fetch(), and __sync_nand_and_
fetch() primitives.

[Quick Quiz 4.23: s it really necessary to have both sets of primitives? Hl]

The classic compare-and-swap operation is provided by a pair of primitives, __
sync_bool_compare_and_swap() and __sync_val_compare_and_swap (). Both
of these primitive atomically update a location to a new value, but only if its prior value
was equal to the specified old value. The first variant returns 1 if the operation succeeded
and 0 if it failed, for example, if the prior value was not equal to the specified old value.
The second variant returns the prior value of the location, which, if equal to the specified
old value, indicates that the operation succeeded. Either of the compare-and-swap
operation is “universal” in the sense that any atomic operation on a single location can
be implemented in terms of compare-and-swap, though the earlier operations are often
more efficient where they apply. The compare-and-swap operation is also capable of

4.2. POSIX MULTIPROCESSING 55

Listing 4.9: Compiler Barrier Primitive (for GCC)

#define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))
#define READ_ONCE(x) \
({ typeof (x)
#define WRITE_ONCE(x, val) \
do { ACCESS_ONCE(x) = (val); } while (O)
#define barrier() __asm volatile__("": : :"memory")

x = ACCESS_ONCE(x) x; B

serving as the basis for a wider set of atomic operations, though the more elaborate of
these often suffer from complexity, scalability, and performance problems [Her90b].

Quick Quiz 4.24: Given that these atomic operations will often be able to generate single
atomic instructions that are directly supported by the underlying instruction set, shouldn’t they
be the fastest possible way to get things done?

The __sync_synchronize () primitive issues a “memory barrier”’, which constrains
both the compiler’s and the CPU’s ability to reorder operations, as discussed in Chapter 15.
In some cases, it is sufficient to constrain the compiler’s ability to reorder operations,
while allowing the CPU free rein, in which case the barrier () primitive may be used.
In some cases, it is only necessary to ensure that the compiler avoids optimizing away a
given memory read, in which case the READ_ONCE () primitive may be used, as it was on
line 20 of Listing 4.5. Similarly, the WRITE_ONCE () primitive may be used to prevent
the compiler from optimizing away a given memory write. These last three primitives
are not provided directly by GCC, but may be implemented straightforwardly as shown
in Listing 4.9, and all three are discussed at length in Section 4.3.4. Alternatively,
READ_ONCE (x) has much in common with the GCC intrinsic __atomic_load_n(&x,
__ATOMIC_RELAXED) and WRITE_ONCE () has much in common with the GCC intrinsic
__atomic_store_n(&x, v, __ATOMIC_RELAXED).

[Quick Quiz 4.25: What happened to ACCESS_ONCE()? M J

4.2.6 Atomic Operations (C11)

The C11 standard added atomic operations, including loads (atomic_load()),
stores (atomic_store()), memory barriers (atomic_thread_fence() and
atomic_signal_fence()), and read-modify-write atomics. The read-modify-
write atomics include atomic_fetch_add(), atomic_fetch_sub(), atomic_
fetch_and(), atomic_fetch_xor(), atomic_exchange(), atomic_compare_
exchange_strong(), and atomic_compare_exchange_weak(). These operate
in a manner similar to those described in Section 4.2.5, but with the addition of memory-
order arguments to _explicit variants of all of the operations. Without memory-order
arguments, all the atomic operations are fully ordered, and the arguments permit weaker
orderings. Forexample, “atomic_load_explicit(&a, memory_order_relaxed)”
is vaguely similar to the Linux kernel’s “READ_ONCE()”.!

4.2.7 Atomic Operations (Modern GCC)

One restriction of the C11 atomics is that they apply only to special atomic types,
which can be problematic. The GNU C compiler therefore provides atomic in-
trinsics, including __atomic_load(), __atomic_load_n(), __atomic_store(),

! Memory ordering is described in more detail in Chapter 15 and Appendix C.

56 CHAPTER 4. TOOLS OF THE TRADE

__atomic_store_n(), __atomic_thread_fence(), etc. These intrinsics offer the
same semantics as their C11 counterparts, but may be used on plain non-atomic objects.
Some of these intrinsics may be passed a memory-order argument from this list: __
ATOMIC_RELAXED, __ATOMIC_CONSUME, __ATOMIC_ACQUIRE, __ATOMIC_RELEASE,
__ATOMIC_ACQ_REL, and __ATOMIC_SEQ_CST.

4.2.8 Per-Thread Variables

Per-thread variables, also called thread-specific data, thread-local storage, and other
less-polite names, are used extremely heavily in concurrent code, as will be explored
in Chapters 5 and 8. POSIX supplies the pthread_key_create () function to create
a per-thread variable (and return the corresponding key), pthread_key_delete()
to delete the per-thread variable corresponding to key, pthread_setspecific() to
set the value of the current thread’s variable corresponding to the specified key, and
pthread_getspecific() to return that value.

A number of compilers (including GCC) provide a __thread specifier that may be
used in a variable definition to designate that variable as being per-thread. The name
of the variable may then be used normally to access the value of the current thread’s
instance of that variable. Of course, __thread is much easier to use than the POSIX
thead-specific data, and so __thread is usually preferred for code that is to be built
only with GCC or other compilers supporting __thread.

Fortunately, the C11 standard introduced a _Thread_local keyword that can be
used in place of __thread. In the fullness of time, this new keyword should combine
the ease of use of __thread with the portability of POSIX thread-specific data.

4.3 Alternatives to POSIX Operations

The strategic marketing paradigm of Open Source is
a massively parallel drunkard’s walk filtered by a
Darwinistic process.

Bruce Perens

Unfortunately, threading operations, locking primitives, and atomic operations were
in reasonably wide use long before the various standards committees got around
to them. As a result, there is considerable variation in how these operations are
supported. It is still quite common to find these operations implemented in assembly
language, either for historical reasons or to obtain better performance in specialized
circumstances. For example, GCC’s __sync_ family of primitives all provide full
memory-ordering semantics, which in the past motivated many developers to create
their own implementations for situations where the full memory ordering semantics are
not required. The following sections show some alternatives from the Linux kernel and
some historical primitives used by this book’s sample code.

4.3.1 Organization and Initialization

Although many environments do not require any special initialization code, the code
samples in this book start with a call to smp_init (), which initializes a mapping from

4.3. ALTERNATIVES TO POSIX OPERATIONS 57

Listing 4.10: Thread API

int smp_thread_id(void)

thread_id_t create_thread(void *(*func)(void *), void *arg)
for_each_thread(t)

for_each_running_thread(t)

void *wait_thread(thread_id_t tid)

void wait_all_threads(void)

pthread_t to consecutive integers. The userspace RCU library? similarly requires a
call to rcu_init (). Although these calls can be hidden in environments (such as that
of GCC) that support constructors, most of the RCU flavors supported by the userspace
RCU library also require each thread invoke rcu_register_thread() upon thread
creation and rcu_unregister_thread () before thread exit.

In the case of the Linux kernel, it is a philosophical question as to whether the kernel
does not require calls to special initialization code or whether the kernel’s boot-time
code is in fact the required initialization code.

4.3.2 Thread Creation, Destruction, and Control

The Linux kernel uses struct task_struct pointers to track kthreads, kthread_
create() to create them, kthread_should_stop() to externally suggest that they
stop (which has no POSIX equivalent), kthread_stop() to wait for them to stop,
and schedule_timeout_interruptible() for a timed wait. There are quite a few
additional kthread-management APIs, but this provides a good start, as well as good
search terms.

The CodeSamples API focuses on “threads”, which are a locus of control.’> Each
such thread has an identifier of type thread_id_t, and no two threads running at a
given time will have the same identifier. Threads share everything except for per-thread
local state,* which includes program counter and stack.

The thread API is shown in Listing 4.10, and members are described in the following
sections.

4.3.2.1 create_thread()

The create_thread() primitive creates a new thread, starting the new thread’s
execution at the function func specified by create_thread()’s first argument, and
passing it the argument specified by create_thread ()’s second argument. This newly
created thread will terminate when it returns from the starting function specified by
func. The create_thread() primitive returns the thread_id_t corresponding to
the newly created child thread.

This primitive will abort the program if more than NR_THREADS threads are created,
counting the one implicitly created by running the program. NR_THREADS is a compile-
time constant that may be modified, though some systems may have an upper bound for
the allowable number of threads.

2 See Section 9.5 for more information on RCU.
3 There are many other names for similar software constructs, including “process”, “task”,
o«

“fiber”, “event”, “execution agent”, and so on. Similar design principles apply to all of them.
4 How is that for a circular definition?

58 CHAPTER 4. TOOLS OF THE TRADE

Listing 4.11: Example Child Thread

1 void *thread_test(void *arg)

2 {

3 int myarg = (intptr_t)arg;

4

5 printf("child thread %d: smp_thread_id() = %d\n",
6 myarg, smp_thread_id());

7 return NULL;

8 F

4.3.2.2 smp_thread_id()

Because the thread_id_t returned from create_thread() is system-dependent,
the smp_thread_id () primitive returns a thread index corresponding to the thread
making the request. This index is guaranteed to be less than the maximum number of
threads that have been in existence since the program started, and is therefore useful for
bitmasks, array indices, and the like.

4.3.2.3 for_each_thread()

The for_each_thread() macro loops through all threads that exist, including all
threads that would exist if created. This macro is useful for handling per-thread variables
as will be seen in Section 4.2.8.

4.3.2.4 for_each_running_thread()

The for_each_running_thread() macro loops through only those threads that
currently exist. It is the caller’s responsibility to synchronize with thread creation and
deletion if required.

4.3.2.5 wait_thread()

The wait_thread() primitive waits for completion of the thread specified by the
thread_id_t passed to it. This in no way interferes with the execution of the specified
thread; instead, it merely waits for it. Note that wait_thread () returns the value that
was returned by the corresponding thread.

4.3.2.6 wait_all_threads()

The wait_all_threads() primitive waits for completion of all currently running
threads. It is the caller’s responsibility to synchronize with thread creation and deletion
if required. However, this primitive is normally used to clean up at the end of a run, so
such synchronization is normally not needed.

4.3.2.7 Example Usage

Listing 4.11 (threadcreate. c) shows an example hello-world-like child thread. As
noted earlier, each thread is allocated its own stack, so each thread has its own private
arg argument and myarg variable. Each child simply prints its argument and its
smp_thread_id () before exiting. Note that the return statement on line 7 terminates
the thread, returning a NULL to whoever invokes wait_thread () on this thread.

The parent program is shown in Listing 4.12. It invokes smp_init () to initialize the
threading system on line 6, parses arguments on lines 8—15, and announces its presence

4.3. ALTERNATIVES TO POSIX OPERATIONS 59

Listing 4.12: Example Parent Thread

I int main(int argc, char *argv[])

2 {

3 int i;

4 int nkids = 1;

5

6 smp_init();

4

3 if (argec > 1) {

9 nkids = strtoul(argv[i], NULL, 0);

10 if (nkids > NR_THREADS) {

11 fprintf (stderr, "nkids = %d too large, max = %d\n",
12 nkids, NR_THREADS);

13 usage (argv[0]);

14 ¥

15 }

16 printf ("Parent thread spawning %d threads.\n", nkids);
17

18 for (i = 0; i < nkids; i++)

19 create_thread(thread_test, (void *) (intptr_t)i);
20

21 wait_all_threads();

22

23 printf("All spawned threads completed.\n");

24

25 exit(0);

2% }

Listing 4.13: Locking API

void spin_lock_init(spinlock_t *sp);
void spin_lock(spinlock_t *sp);

int spin_trylock(spinlock_t *sp);
void spin_unlock(spinlock_t *sp);

on line 16. It creates the specified number of child threads on lines 18—19, and waits
for them to complete on line 21. Note that wait_all_threads () discards the threads
return values, as in this case they are all NULL, which is not very interesting.

Quick Quiz 4.26: What happened to the Linux-kernel equivalents to fork () and wait()?
|

4.3.3 Locking

A good starting subset of the Linux kernel’s locking API is shown in Listing 4.13,
each API element being described in the following sections. This book’s CodeSamples
locking API closely follows that of the Linux kernel.

4.3.3.1 spin_lock_init()

The spin_lock_init () primitive initializes the specified spinlock_t variable, and
must be invoked before this variable is passed to any other spinlock primitive.

4.3.3.2 spin_lock()

The spin_lock() primitive acquires the specified spinlock, if necessary, waiting until
the spinlock becomes available. In some environments, such as pthreads, this waiting
will involve blocking, while in others, such as the Linux kernel, it might involve a
CPU-bound spin loop.

The key point is that only one thread may hold a spinlock at any given time.

60 CHAPTER 4. TOOLS OF THE TRADE

Listing 4.14: Living Dangerously Early 1990s Style

I ptr = global_ptr;
2 if (ptr != NULL && ptr < high_address)
3 do_low(ptr) ;

Listing 4.15: C Compilers Can Invent Loads

1 if (global_ptr != NULL &&
2 global_ptr < high_address)
3 do_low(global_ptr);

4.3.3.3 spin_trylock()

The spin_trylock() primitive acquires the specified spinlock, but only if it is
immediately available. It returns true if it was able to acquire the spinlock and false
otherwise.

4.3.3.4 spin_unlock()

The spin_unlock() primitive releases the specified spinlock, allowing other threads
to acquire it.

4.3.3.5 Example Usage

A spinlock named mutex may be used to protect a variable counter as follows:

spin_lock(&mutex) ;
counter++;
spin_unlock (&mutex) ;

Quick Quiz 4.27: What problems could occur if the variable counter were incremented
without the protection of mutex? H

However, the spin_lock() and spin_unlock() primitives do have performance
consequences, as will be seen in Chapter 10.

4.3.4 Accessing Shared Variables

It was not until 2011 that the C standard defined semantics for concurrent read/write
access to shared variables. However, concurrent C code was being written at least
a quarter century earlier [BK85, Inm85]. This raises the question as to what today’s
greybeards did back in long-past pre-C11 days. A short answer to this question is “they
lived dangerously”.

At least they would have been living dangerously had they been using 2018 compilers.
In (say) the early 1990s, compilers did fewer optimizations, in part because there were
fewer compiler writers and in part due to the relatively small memories of that era.
Nevertheless, problems did arise, as shown in Listing 4.14, which the compiler is
within its rights to transform into Listing 4.15. As you can, the temporary on line 1 of
Listing 4.14 has been optimized away, so that global_ptr will be loaded up to three
times.

Quick Quiz 4.28: What is wrong with loading Listing 4.14’s global_ptr up to three times?
|

4.3. ALTERNATIVES TO POSIX OPERATIONS 61

Listing 4.16: Inviting Load Fusing

1 while (!need_to_stop)
2 do_something_quickly();

Section 4.3.4.1 describes additional problems caused by plain accesses, Sec-
tions 4.3.4.2 and 4.3.4.3 describe some pre-C11 solutions. Of course, where practical,
the primitives described in Section 4.2.5 or (especially) Section 4.2.6 should instead be
used to avoid data races, that is, to ensure that if there are multiple concurrent accesses
to a given variable, all of those accesses are loads.

4.3.4.1 Shared-Variable Shenanigans

Given code that does plain loads and stores,’ the compiler is within its rights to assume
that the affected variables are neither accessed nor modified by any other thread. This
assumption allows the compiler to carry out a large number of transformations, including
load tearing, store tearing, load fusing, store fusing, code reordering, invented loads,
invented stores, store-to-load transformations, and dead-code elimination, all of which
work just fine in single-threaded code. But concurrent code can be broken by each of
these transformations, or shared-variable shenanigans, as described below.

Load tearing occurs when the compiler uses multiple load instructions for a single
access. For example, the compiler could in theory compile the load from global_ptr
(see line 1 of Listing 4.14) as a series of one-byte loads. If some other thread was
concurrently setting global_ptr to NULL, the result might have all but one byte of the
pointer set to zero, thus forming a “wild pointer”. Stores using such a wild pointer could
corrupt arbitrary regions of memory, resulting in rare and difficult-to-debug crashes.

Worse yet, on (say) an 8-bit system with 16-bit pointers, the compiler might have no
choice but to use a pair of 8-bit instructions to access a given pointer. Because the C
standard must support all manner of systems, the standard cannot rule out load tearing
in the general case.

Store tearing occurs when the compiler uses multiple store instructions for a single
access. For example, one thread might store 0x12345678 to a four-byte integer variable
at the same time another thread stored Oxabcdef00. If the compiler used 16-bit stores
for either access, the result might well be 0x1234e£00, which could come as quite a
surprise to code loading from this integer. Nor is this a strictly theoretical issue. For
example, there are CPUs that feature small immediate instruction fields, and on such
CPUs, the compiler might split a 64-bit store into two 32-bit stores in order to reduce
the overhead of explicitly forming the 64-bit constant in a register, even on a 64-bit CPU.
There are historical reports of this actually happening in the wild (e.g. [KM13]), but
there is also a recent report [Deal9].°

Of course, the compiler simply has no choice but to tear some stores in the general
case, given the possibility of code using 64-bit integers running on a 32-bit system. But
for properly aligned machine-sized stores, WRITE_ONCE () will prevent store tearing.

Load fusing occurs when the compiler uses the result of a prior load from a given
variable instead of repeating the load. Not only is this sort of optimization just fine in

5 That is, normal loads and stores instead of C11 atomics, inline assembly, or volatile
accesses.

6 Note that this tearing can happen even on properly aligned and machine-word-sized
accesses, and in this particular case, even for volatile stores. Some might argue that this
behavior constitutes a bug in the compiler, but either way it illustrates the perceived value of
store tearing from a compiler-writer viewpoint.

62 CHAPTER 4. TOOLS OF THE TRADE

Listing 4.17: C Compilers Can Fuse Loads

1 if (!need_to_stop)

for (53) {
do_something_quickly();
do_something_quickly();
do_something_quickly();
do_something_quickly();
do_something_quickly();
do_something_quickly();

[7 I IR}

9 do_something_quickly();
10 do_something_quickly();
11 do_something_quickly();
12 do_something_quickly();
13 do_something_quickly();
14 do_something_quickly();
15 do_something_quickly();
16 do_something_quickly();
17 do_something_quickly();
18 do_something_quickly();
19 }

Listing 4.18: C Compilers Can Fuse Non-Adjacent Loads

1 int *gp;
2

3 void tO(void)

4 q

5 WRITE_ONCE(gp, &myvar);
6 }
7
8

void t1(void)

9 {

10 pl = gp;

11 do_something(pl);

12 p2 = READ_ONCE(gp) ;

13 if (p2) {

14 do_something_else();
15 p3 = *gp;

16 }

17 }

single-threaded code, it is often just fine in multithreaded code. Unfortunately, the word
“often” hides some truly annoying exceptions.

For example, suppose that a real-time system needs to invoke a function named
do_something_quickly () repeatedly until the variable need_to_stop was set, and
that the compiler can see that do_something_quickly () does not store to need_to_
stop. One (unsafe) way to code this is shown in Listing 4.16. The compiler might
reasonably unroll this loop sixteen times in order to reduce the per-invocation of the
backwards branch at the end of the loop. Worse yet, because the compiler knows
that do_something_quickly() does not store to need_to_stop, the compiler could
quite reasonably decide to check this variable only once, resulting in the code shown in
Listing 4.17. Once entered, the loop on lines 2—19 will never exit, regardless of how
many times some other thread stores a non-zero value to need_to_stop. The result
will at best be consternation, and might well also include severe physical damage.

The compiler can fuse loads across surprisingly large spans of code. For example,
in Listing 4.18, t0() and t1() run concurrently, and do_something() and do_
something_else () areinline functions. Line 1 declares pointer gp, which C initializes
to NULL by default. At some point, line 5 of t0() stores a non-NULL pointer to gp.
Meanwhile, t1() loads from gp three times on lines 10, 12, and 15. Given that line 13
finds that gp is non-NULL, one might hope that the dereference on line 15 would be
guaranteed never to fault. Unfortunately, the compiler is within its rights to fuse the read

4.3. ALTERNATIVES TO POSIX OPERATIONS 63

Listing 4.19: C Compilers Can Fuse Stores

| void shut_it_down(void)

2 {

3 status = SHUTTING_DOWN; /* BUGGY!!! */

4 start_shutdown();

5 while (!other_task_ready) /* BUGGY!!! */
6 continue;

7 finish_shutdown();

8 status = SHUT_DOWN; /* BUGGY!!! */

9 do_something_else();

10 }

11

12 void work_until_shut_down(void)

13 {

14 while (status != SHUTTING_DOWN) /* BUGGY!!! x/
15 do_more_work();

16 other_task_ready = 1; /* BUGGY!!! */

17 }

on lines 10 and 15, which means that if line 10 loads NULL and line 12 loads &myvar,
line 15 could load NULL, resulting in a fault.” Note that the intervening READ_ONCE ()
does not prevent the other two loads from being fused, despite the fact that all three are
loading from the same variable.

Quick Quiz4.29: Why does it matter whether do_something() anddo_something_else()
in Listing 4.18 are inline functions?

Store fusing can occur when the compiler notices a pair of successive stores to a
given variable with no intervening loads from that variable. In this case, the compiler is
within its rights to omit the first store. This is never a problem in single-threaded code,
and in fact it is usually not a problem in correctly written concurrent code. After all, if
the two stores are executed in quick succession, there is very little chance that some
other thread could load the value from the first store.

However, there are exceptions, for example as shown in Listing 4.19. The function
shut_it_down() stores to the shared variable status on lines 3 and 8, and so
assuming that neither start_shutdown() nor finish_shutdown() access status,
the compiler could reasonably remove the store to status on line 3. Unfortunately,
this would mean that work_until_shut_down () would never exit its loop spanning
lines 14 and 15, and thus would never set other_task_ready, which would in turn
mean that shut_it_down() would never exit its loop spanning lines 5 and 6, even if
the compiler chooses not to fuse the successive loads from other_task_ready on
line 5.

And there are more problems with the code in Listing 4.19, including code reordering.

Code reordering is a common compilation technique used to combine common
subexpressions, reduce register pressure, and improve utilization of the many functional
units available on modern superscalar microprocessors. It is also another reason why
the code in Listing 4.19 is buggy. For example, suppose that the do_more_work ()
function on line 15 does not access other_task_ready. Then the compiler would be
within its rights to move the assignment to other_task_ready on line 16 to precede
line 14, which might be a great disappointment for anyone hoping that the last call
to do_more_work () on line 15 happens before the call to finish_shutdown() on
line 7.

It might seem futile to prevent the compiler from changing the order of accesses
in cases where the underlying hardware is free to reorder them. However, modern

7 Will Deacon reports that this happened in the Linux kernel.

64 CHAPTER 4. TOOLS OF THE TRADE

Listing 4.20: Inviting an Invented Store

1 if (condition)

2 a=1;
3 else
4 do_a_bunch_of_stuff();

Listing 4.21: Compiler Invents an Invited Store

1 a=1;

2 if (!condition) {

3 a = 0;

4 do_a_bunch_of_stuff();
5}

machines have exact exceptions and exact interrupts, meaning that any interrupt or
exception will appear to have happened at a specific place in the instruction stream.
This means that the handler will see the effect of all prior instructions, but won’t see the
effect of any subsequent instructions. READ_ONCE () and WRITE_ONCE() can therefore
be used to control communication between interrupted code and interrupt handlers,
independent of the ordering provided by the underlying hardware.®

Invented loads were illustrated by the code in Listings 4.14 and 4.15, in which the
compiler optimized away a temporary variable, thus loading from a shared variable
more often than intended.

Invented loads can be a performance hazard. These hazards can occur when a load
of variable in a “hot” cacheline is hoisted out of an if statement. These hoisting
optimizations are not uncommon, and can cause significant increases in cache misses,
and thus significant degradation of both performance and scalability.

Invented stores can occur in a number of situations. For example, a compiler emitting
code for work_until_shut_down() in Listing 4.19 might notice that other_task_
ready is not accessed by do_more_work (), and stored to on line 16. If do_more_
work () was a complex inline function, it might be necessary to do a register spill, in
which case one attractive place to use for temporary storage is other_task_ready.
After all, there are no accesses to it, so what is the harm?

Of course, a non-zero store to this variable at just the wrong time would result in the
while loop on line 5 terminating prematurely, again allowing finish_shutdown ()
to run concurrently with do_more_work (). Given that the entire point of this while
appears to be to prevent such concurrency, this is not a good thing.

Using a stored-to variable as a temporary might seem outlandish, but it is permitted
by the standard. Nevertheless, readers might be justified in wanting a less outlandish
example, which is provided by Listings 4.20 and 4.21.

A compiler emitting code for Listing 4.20 might know that the value of a is initially
zero, which might be a strong temptation to optimize away one branch by transforming
this code to that in Listing 4.21. Here, line 1 unconditionally stores 1 to a, then resets the
value back to zero on line 3 if condition was not set. This transforms the if-then-else
into an if-then, saving one branch.

Quick Quiz 4.30: Ouch! So can’t the compiler invent a store to a normal variable pretty much
any time it likes?

Finally, pre-C11 compilers could invent writes to unrelated variables that happened
to be adjacent to written-to variables [Boe(05, Section 4.2]. This variant of invented

8 That said, the various standards committees would prefer that you use atomics or
variables of type sig_atomic_t, instead of READ_ONCE() and WRITE_ONCE().

4.3. ALTERNATIVES TO POSIX OPERATIONS 65

Listing 4.22: Inviting a Store-to-Load Conversion
1 rl = p;

2 if (unlikely(rl))

3 do_something_with(rl);

4 barrier();

5 p = NULL;

Listing 4.23: Compiler Converts a Store to a Load
1 rl = p;

2 if (unlikely(r1))

3 do_something_with(r1l);

4 barrier();

s if (p != NULL)

6 p = NULL;

stores has been outlawed by the prohibition against compiler optimizations that invent
data races.

Store-to-load transformations can occur when the compiler notices that a plain
store might not actually change the value in memory. For example, consider Listing 4.22.
Line 1 fetches p, but the “if” statement on line 2 also tells the compiler that the
developer thinks that p is usually zero.” The barrier () statment on line 4 forces
the compiler to forget the value of p, but one could imagine a compiler choosing to
remember the hint—or getting an additional hint via feedback-directed optimization.
Doing so would cause the compiler to realize that line 5 is often an expensive no-op.

Such a compiler might therefore guard the store of NULL with a check, as shown on
lines 5 and 6 of Listing 4.23. Although this transformation is often desirable, it could be
problematic if the actual store was required for ordering. For example, a write memory
barrier (Linux kernel smp_wmb ()) would order the store, but not the load. This situation
might suggest use of smp_store_release () over smp_wmb ().

Dead-code elimination can occur when the compiler notices that the value from
a load is never used, or when a variable is stored to, but never loaded from. This
can of course eliminate an access to a shared variable, which can in turn defeat a
memory-ordering primitive, which could cause your concurrent code to act in surprising
ways. Experience thus far indicates that relatively few such surprises will be at all
pleasant. Elimination of store-only variables is especially dangerous in cases where
external code locates the variable via symbol tables: The compiler is necessarily ignorant
of such external-code accesses, and might thus eliminate a variable that the external
code relies upon.

Reliable concurrent code clearly needs a way to cause the compiler to preserve the
number, order, and type of important accesses to shared memory, a topic taken up by
Sections 4.3.4.2 and 4.3.4.3, which are up next.

4.3.4.2 A Volatile Solution

Although it is now much maligned, before the advent of C11 and C++11 [Becl1], the
volatile keyword was an indispensible tool in the parallel programmer’s toolbox. This
raises the question of exactly what volatile means, a question that is not answered
with excessive precision even by more recent versions of this standard [Smil8].1°

9 The unlikely() function provides this hint to the compiler, and different compilers
provide different ways of implementing unlikely ().

10° JF Bastien thoroughly documented the history and use cases for the volatile keyword
in C++ [Basl18].

66 CHAPTER 4. TOOLS OF THE TRADE

This version guarantees that “Accesses through volatile glvalues are evaluated
strictly according to the rules of the abstract machine”, that volatile accesses are side
effects, that they are one of the four forward-progress indicators, and that their exact
semantics are implementation-defined. Perhaps the clearest guidance is provided by
this non-normative note:

volatile is a hint to the implementation to avoid aggressive optimization
involving the object because the value of the object might be changed by means
undetectable by an implementation. Furthermore, for some implementations,
volatile might indicate that special hardware instructions are required to
access the object. See 6.8.1 for detailed semantics. In general, the semantics
of volatile are intended to be the same in C++ as they are in C.

This wording might be reassuring to those writing low-level code, except for the
fact that compiler writers are free to completely ignore non-normative notes. Parallel
programmers might instead reassure themselves that compiler writers would like to
avoid breaking device drivers (though perhaps only after a few “frank and open”
discussions with device-driver developers), and device drivers impose at least the
following constraints [MWPF18a]:

1. Implementations are forbidden from tearing an aligned volatile access when
machine instructions of that access’s size and type are available.!! Concurrent
code relies on this constraint to avoid unnecessary load and store tearing.

2. Implementations must not assume anything about the semantics of a volatile
access, nor, for any volatile access that returns a value, about the possible set
of values that might be returned.!> Concurrent code relies on this constraint to
avoid optimizations that are inapplicable given that other processors might be
concurrently accessing the location in question.

3. Aligned machine-sized non-mixed-size volatile accesses interact naturally with
volatile assembly-code sequences before and after. This is necessary because some
devices must be accessed using a combination of volatile MMIO accesses and
special-purpose assembly-language instructions. Concurrent code relies on this
constraint in order to achieve the desired ordering properties from combinations of
volatile accesses and other means discussed in Section 4.3.4.3.

Concurrent code also relies on the first two constraints to avoid undefined behavior
that could result due to data races if any of the accesses to a given object was either
non-atomic or non-volatile, assuming that all accesses are aligned and machine-sized.
The semantics of mixed-size accesses to the same locations are more complex, and are
left aside for the time being.

So how does volatile stack up against the earlier examples?

Using READ_ONCE () on line 1 of Listing 4.14 avoids invented loads, resulting in the
code shown in Listing 4.24.

As shown in Listing 4.25, READ_ONCE() can also prevent the loop unrolling in
Listing 4.17.

T Note that this leaves unspecified what to do with 128-bit loads and stores on CPUs
having 128-bit CAS but not 128-bit loads and stores.
12 This is strongly implied by the implementation-defined semantics called out above.

4.3. ALTERNATIVES TO POSIX OPERATIONS 67

Listing 4.24: Avoiding Danger, 2018 Style

I ptr = READ_ONCE(global_ptr);
2 if (ptr != NULL && ptr < high_address)
3 do_low(ptr);

Listing 4.25: Preventing Load Fusing

I while (!READ_ONCE(need_to_stop))
2 do_something_quickly();

Listing 4.26: Preventing Store Fusing and Invented Stores

1 void shut_it_down(void)

2 {

3 WRITE_ONCE(status, SHUTTING_DOWN); /* BUGGY!!! */

4 start_shutdown() ;

5 while (!READ_ONCE(other_task_ready)) /* BUGGY!!! x/
6 continue;

7 finish_shutdown() ;

8 WRITE_ONCE(status, SHUT_DOWN); /* BUGGY!!! */

9 do_something_else();

10 }

1

12 void work_until_shut_down(void)

13 {

14 while (READ_ONCE(status) != SHUTTING_DOWN) /* BUGGY!!! */
15 do_more_work() ;

16 WRITE_ONCE (other_task_ready, 1); /* BUGGY!!! x/

17 ¥

READ_ONCE() and WRITE_ONCE() can also be used to prevent the store fusing and
invented stores that were shown in Listing 4.19, with the result shown in Listing 4.26.
However, this does nothing to prevent code reordering, which requires some additional
tricks taught in Section 4.3.4.3.

Finally, WRITE_ONCE() can be used to prevent the store invention shown in List-
ing 4.20, with the resulting code shown in Listing 4.27.

To summarize, the volatile keyword can prevent load tearing and store tearing in
cases where the loads and stores are machine-sized and properly aligned. It can also
prevent load fusing, store fusing, invented loads, and invented stores. However, although
it does prevent the compiler from reordering volatile accesses with each other, it
does nothing to prevent the CPU from reordering these accesses. Furthermore, it does
nothing to prevent either compiler or CPU from reordering non-volatile accesses with
each other or with volatile accesses. Preventing these types of reordering requires
the techniques described in the next section.

4.3.4.3 Assembling the Rest of a Solution

Additional ordering has traditionally been provided by recourse to assembly language, for
example, GCC asm directives. Oddly enough, these directives need not actually contain
assembly language, as exemplified by the barrier () macro shown in Listing 4.9.

Listing 4.27: Disinviting an Invented Store

1 if (condition)

2 WRITE_ONCE(a, 1);

3 else

4 do_a_bunch_of_stuff();

68 CHAPTER 4. TOOLS OF THE TRADE

Listing 4.28: Preventing C Compilers From Fusing Loads

I while (!need_to_stop) {

2 barrier();

3 do_something_quickly();
4

5

barrier();

}

Listing 4.29: Preventing Reordering

1 void shut_it_down(void)

2 {

3 WRITE_ONCE(status, SHUTTING_DOWN) ;
4 smp_mb () ;

5 start_shutdown() ;

6 while (!READ_ONCE(other_task_ready))
7 continue;

8 smp_mb () ;

9 finish_shutdown();

10 smp_mb () ;

1 WRITE_ONCE(status, SHUT_DOWN);

12 do_something_else();

13}

14

15 void work_until_shut_down(void)

16 {

17 while (READ_ONCE(status) != SHUTTING_DOWN) {
18 smp_mb () ;

19 do_more_work() ;
20 }
21 smp_mb() ;
2 WRITE_ONCE (other_task_ready, 1);
23 }

In the barrier () macro, the __asm__ introduces the asm directive, the __
volatile__ prevents the compiler from optimizing the asm away, the empty string
specifies that no actual instructions are to be emitted, and the final "memory" tells
the compiler that this do-nothing asm can arbitrarily change memory. In response,
the compiler will avoid moving any memory references across the barrier () macro.
This means that the real-time-destroying loop unrolling shown in Listing 4.17 can be
prevented by adding barrier () calls as shown on lines 2 and 4 of Listing 4.28. These
two lines of code prevent the compiler from pushing the load from need_to_stop into
or past do_something_quickly () from either direction.

However, this does nothing to prevent the CPU from reordering the references. In
many cases, this is not a problem because the hardware can only do a certain amount
of reordering. Howeyver, there are cases such as Listing 4.19 where the hardware must
be constrained. Listing 4.26 prevented store fusing and invention, and Listing 4.29
further prevents the remaining reordering by addition of smp_mb () on lines 4, 8, 10,
18, and 21. The smp_mb () macro is similar to barrier () shown in Listing 4.9, but
with the empty string replaced by a string containing the instruction for a full memory
barrier, for example, "mfence" on x86 or "sync" on PowerPC.

Quick Quiz 4.31: But aren’t full memory barriers very heavyweight? Isn’t there a cheaper
way to enforce the ordering needed in Listing 4.29? W

Ordering is also provided by some read-modify-write atomic operations, some of
which are presented in Section 4.3.5. In the general case, memory ordering can be quite
subtle, as discussed in Chapter 15. The next section covers an alternative to memory
ordering, namely limiting or even entirely avoiding data races.

4.3. ALTERNATIVES TO POSIX OPERATIONS 69

4.3.4.4 Avoiding Data Races

“Doctor, it hurts my head when I think about concurrently accessing shared
variables!”

“Then stop concurrently accessing shared variables!!!”

The doctor’s advice might seem unhelpful, but one time-tested way to avoid con-
currently accessing shared variables is access those variables only when holding a
particular lock, as will be discussed in Chapter 7. Another way is to access a given
“shared” variable only from a given CPU or thread, as will be discussed in Chapter 8. It
is possible to combine these two approaches, for example, a given variable might be
modified only by a given CPU or thread while holding a particular lock, and might be
read either from that same CPU or thread on the one hand, or from some other CPU or
thread while holding that same lock on the other. In all of these situations, all accesses
to the shared variables may be plain C-language accesses.

Here is a list of situations allowing plain loads and stores for some accesses to a
given variable, while requiring markings (such as READ_ONCE () and WRITE_ONCE())
for other accesses to that same variable:

1. A shared variable is only modified by a given owning CPU or thread, but is read
by other CPUs or threads. All stores must use WRITE_ONCE (). The owning CPU
or thread may use plain loads. Everything else must use READ_ONCE () for loads.

2. A shared variable is only modified while holding a given lock, but is read by
code not holding that lock. All stores must use WRITE_ONCE(). CPUs or threads
holding the lock may use plain loads. Everything else must use READ_ONCE () for
loads.

3. A shared variable is only modified while holding a given lock by a given owning
CPU or thread, but is read by other CPUs or threads or by code not holding that
lock. All stores must use WRITE_ONCE(). The owning CPU or thread may use
plain loads, as may any CPU or thread holding the lock. Everything else must use
READ_ONCE() for loads.

4. A shared variable is only accessed by a given CPU or thread and by a signal or
interrupt handler running in that CPU’s or thread’s context. The handler can use
plain loads and stores, as can any code that has prevented the handler from being
invoked, that is, code that has blocked signals and/or interrupts. All other code
must use READ_ONCE () and WRITE_ONCE().

5. A shared variable is only accessed by a given CPU or thread and by a signal or
interrupt handler running in that CPU’s or thread’s context, and the handler always
restores the values of any variables that it has written before return. The handler
can use plain loads and stores, as can any code that has prevented the handler from
being invoked, that is, code that has blocked signals and/or interrupts. All other
code can use plain loads, but must use WRITE_ONCE() to prevent store tearing,
store fusing, and invented stores.

Quick Quiz 4.32: What needs to happen if an interrupt or signal handler might itself be
interrupted? W

70 CHAPTER 4. TOOLS OF THE TRADE

Listing 4.30: Per-Thread-Variable API

DEFINE_PER_THREAD (type, name)
DECLARE_PER_THREAD (type, name)
per_thread(name, thread)
__get_thread_var (name)
init_per_thread(name, v)

In most other cases, loads from and stores to a shared variable must use READ _
ONCE() and WRITE_ONCE() or stronger, respectively. But it bears repeating that neither
READ_ONCE() nor WRITE_ONCE () provide any ordering guarantees other than within
the compiler. See the above Section 4.3.4.3 or Chapter 15 for information on such
guarantees.

Examples of many of these data-race-avoidance patterns are presented in Chapter 5.

4.3.5 Atomic Operations

The Linux kernel provides a wide variety of atomic operations, but those defined on
type atomic_t provide a good start. Normal non-tearing reads and stores are provided
by atomic_read() and atomic_set (), respectively. Acquire load is provided by
smp_load_acquire () and release store by smp_store_release().

Non-value-returning fetch-and-add operations are provided by atomic_add(),
atomic_sub(), atomic_inc(), and atomic_dec(), among others. An atomic
decrement that returns a reached-zero indication is provided by both atomic_dec_
and_test () and atomic_sub_and_test (). Anatomic add that returns the new value
is provided by atomic_add_return(). Both atomic_add_unless() and atomic_
inc_not_zero () provide conditional atomic operations, where nothing happens unless
the original value of the atomic variable is different than the value specified (these are
very handy for managing reference counters, for example).

An atomic exchange operation is provided by atomic_xchg(), and the celebrated
compare-and-swap (CAS) operation is provided by atomic_cmpxchg(). Both of these
return the old value. Many additional atomic RMW primitives are available in the Linux
kernel, see the Documentation/core-api/atomic_ops.rst file in the Linux-kernel
source tree.

This book’s CodeSamples API closely follows that of the Linux kernel.

4.3.6 Per-CPU Variables

The Linux kernel uses DEFINE_PER_CPU() to define a per-CPU variable, this_
cpu_ptr() to form a reference to this CPU’s instance of a given per-CPU variable,
per_cpu() to access a specified CPU’s instance of a given per-CPU variable, along
with many other special-purpose per-CPU operations.

Listing 4.30 shows this book’s per-thread-variable API, which is patterned after the
Linux kernel’s per-CPU-variable API. This API provides the per-thread equivalent of
global variables. Although this API is, strictly speaking, not necessary'3, it can provide
a good userspace analogy to Linux kernel code.

Quick Quiz 4.33: How could you work around the lack of a per-thread-variable API on
systems that do not provide it? Wl

13 You could instead use __thread or _Thread_local.

4.3. ALTERNATIVES TO POSIX OPERATIONS 71

4.3.6.1 DEFINE_PER_THREAD()
The DEFINE_PER_THREAD () primitive defines a per-thread variable. Unfortunately,

it is not possible to provide an initializer in the way permitted by the Linux kernel’s
DEFINE_PER_CPU() primitive, but there is an init_per_thread() primitive that
permits easy runtime initialization.

4.3.6.2 DECLARE_PER_THREAD()

The DECLARE_PER_THREAD () primitive is a declaration in the C sense, as opposed
to a definition. Thus, a DECLARE_PER_THREAD () primitive may be used to access a
per-thread variable defined in some other file.

4.3.6.3 per_thread()

The per_thread () primitive accesses the specified thread’s variable.

4.3.6.4 __get_thread_var()

The __get_thread_var () primitive accesses the current thread’s variable.

4.3.6.5 init_per_thread()

The init_per_thread() primitive sets all threads’ instances of the specified variable
to the specified value. The Linux kernel accomplishes this via normal C initialization,
relying in clever use of linker scripts and code executed during the CPU-online process.

4.3.6.6 Usage Example

Suppose that we have a counter that is incremented very frequently but read out quite
rarely. As will become clear in Section 5.2, it is helpful to implement such a counter
using a per-thread variable. Such a variable can be defined as follows:

’DEFINE_PER_THREAD(int, counter) ; ‘

The counter must be initialized as follows:

init_per_thread(counter, 0);

A thread can increment its instance of this counter as follows:

p_counter = &__get_thread_var(counter) ;
WRITE_ONCE (*p_counter, *p_counter + 1);

The value of the counter is then the sum of its instances. A snapshot of the value of
the counter can thus be collected as follows:

for_each_thread(t)
sum += READ_ONCE(per_thread(counter, t));

Again, it is possible to gain a similar effect using other mechanisms, but per-thread
variables combine convenience and high performance, as will be shown in more detail
in Section 5.2.

72 CHAPTER 4. TOOLS OF THE TRADE

4.4 The Right Tool for the Job: How to Choose?

If you get stuck, change your tools; it may free your
thinking.

Paul Arden, abbreviated

As a rough rule of thumb, use the simplest tool that will get the job done. If you
can, simply program sequentially. If that is insufficient, try using a shell script to
mediate parallelism. If the resulting shell-script fork ()/exec () overhead (about 480
microseconds for a minimal C program on an Intel Core Duo laptop) is too large,
try using the C-language fork() and wait () primitives. If the overhead of these
primitives (about 80 microseconds for a minimal child process) is still too large, then
you might need to use the POSIX threading primitives, choosing the appropriate locking
and/or atomic-operation primitives. If the overhead of the POSIX threading primitives
(typically sub-microsecond) is too great, then the primitives introduced in Chapter 9
may be required. Of course, the actual overheads will depend not only on your hardware,
but most critically on the manner in which you use the primitives. Furthermore,
always remember that inter-process communication and message-passing can be good
alternatives to shared-memory multithreaded execution, especially when your code
makes good use of the design principles called out in Chapter 6.

[Quick Quiz 4.34: Wouldn’t the shell normally use vfork () rather than fork()? W J

Because concurrency was added to the C standard several decades after the C language
was first used to build concurrent systems, there are a number of ways of concurrently
accessing shared variables. All else being equal, the C11 standard operations described
in Section 4.2.6 should be your first stop. If you need to access a given shared variable
both with plain accesses and atomically, then the modern GCC atomics described in
Section 4.2.7 might work well for you. If you are working on an old codebase that
uses the classic GCC __sync API, then you should review Section 4.2.5 as well as
the relevant GCC documentation. If you are working on the Linux kernel or similar
codebase that combines use of the volatile keyword with inline assembly, or if you
need dependencies to provide ordering, look at the material presented in Section 4.3.4
as well as that in Chapter 15.

Whatever approach you take, please keep in mind that randomly hacking multi-
threaded code is a spectacularly bad idea, especially given that shared-memory parallel
systems use your own intelligence against you: The smarter you are, the deeper a hole
you will dig for yourself before you realize that you are in trouble [Pok16]. Therefore, it
is necessary to make the right design choices as well as the correct choice of individual
primitives, as will be discussed at length in subsequent chapters.

Aseasy as 1, 2, 3!

Unknown

Chapter 5

Counting

Counting is perhaps the simplest and most natural thing a computer can do. However,
counting efficiently and scalably on a large shared-memory multiprocessor can be quite
challenging. Furthermore, the simplicity of the underlying concept of counting allows
us to explore the fundamental issues of concurrency without the distractions of elaborate
data structures or complex synchronization primitives. Counting therefore provides an
excellent introduction to parallel programming.

This chapter covers a number of special cases for which there are simple, fast, and
scalable counting algorithms. But first, let us find out how much you already know
about concurrent counting.

Quick Quiz 5.1: Why should efficient and scalable counting be hard??? After all, computers
have special hardware for the sole purpose of doing counting!!!

Quick Quiz 5.2: Network-packet counting problem. Suppose that you need to collect
statistics on the number of networking packets transmitted and received. Packets might be
transmitted or received by any CPU on the system. Suppose further that your system is capable
of handling millions of packets per second per CPU, and that a systems-monitoring package
reads the count every five seconds. How would you implement this counter? W

Quick Quiz 5.3: Approximate structure-allocation limit problem. Suppose that you
need to maintain a count of the number of structures allocated in order to fail any allocations
once the number of structures in use exceeds a limit (say, 10,000). Suppose further that these
structures are short-lived, that the limit is rarely exceeded, and that a “sloppy”” approximate
limit is acceptable. H

Quick Quiz 5.4: Exact structure-allocation limit problem. Suppose that you need to
maintain a count of the number of structures allocated in order to fail any allocations once the
number of structures in use exceeds an exact limit (again, say 10,000). Suppose further that
these structures are short-lived, and that the limit is rarely exceeded, that there is almost always
at least one structure in use, and suppose further still that it is necessary to know exactly when
this counter reaches zero, for example, in order to free up some memory that is not required
unless there is at least one structure in use. W

Quick Quiz 5.5: Removable I/O device access-count problem. Suppose that you need to
maintain a reference count on a heavily used removable mass-storage device, so that you can
tell the user when it is safe to remove the device. As usual, the user indicates a desire to remove
the device, and the system tells the user when it is safe to do so. W

73

74 CHAPTER 5. COUNTING

Listing 5.1: Just Count!

I unsigned long counter = 0;
2
3 static __inline_

void inc_count(void)

4 1

5 WRITE_ONCE(counter, READ_ONCE(counter) + 1);
6 }

7

8 static __inline__ unsigned long read_count(void)

9 {

10 return READ_ONCE(counter);

1 x

The remainder of this chapter will develop answers to these questions. Section 5.1
asks why counting on multicore systems isn’t trivial, and Section 5.2 looks into ways of
solving the network-packet counting problem. Section 5.3 investigates the approximate
structure-allocation limit problem, while Section 5.4 takes on the exact structure-
allocation limit problem. Finally, Section 5.5 concludes the chapter with performance
measurements.

Sections 5.1 and 5.2 contain introductory material, while the remaining sections are
more appropriate for advanced students.

5.1 Why Isn’t Concurrent Counting Trivial?

Seek simplicity, and distrust it.

Alfred North Whitehead

Let’s start with something simple, for example, the straightforward use of arithmetic
shown in Listing 5.1 (count_nonatomic.c). Here, we have a counter on line 1, we
increment it on line 5, and we read out its value on line 10. What could be simpler?

This approach has the additional advantage of being blazingly fast if you are doing
lots of reading and almost no incrementing, and on small systems, the performance is
excellent.

There is just one large fly in the ointment: this approach can lose counts. On my
dual-core laptop, a short run invoked inc_count () 100,014,000 times, but the final
value of the counter was only 52,909,118. Although approximate values do have their
place in computing, accuracies far greater than 50 % are almost always necessary.

Quick Quiz 5.6: But can’t a smart compiler prove line 5 of Listing 5.1 is equivalent to the ++
operator and produce an x86 add-to-memory instruction? And won’t the CPU cache cause this
to be atomic? W

Quick Quiz 5.7: The 8-figure accuracy on the number of failures indicates that you really did
test this. Why would it be necessary to test such a trivial program, especially when the bug is
easily seen by inspection? W

The straightforward way to count accurately is to use atomic operations, as shown in
Listing 5.2 (count_atomic.c). Line 1 defines an atomic variable, line 5 atomically
increments it, and line 10 reads it out. Because this is atomic, it keeps perfect count.
However, it is slower: on a Intel Core Duo laptop, it is about six times slower than

5.1. WHY ISN’T CONCURRENT COUNTING TRIVIAL? 75

Listing 5.2: Just Count Atomically!
atomic_t counter = ATOMIC_INIT(O);

1
2
3 static __inline__ void inc_count(void)
4 {
5 atomic_inc(&counter) ;
6 }
7
8 static __inline__ long read_count(void)
9 {
10 return atomic_read(&counter);
1 x
100000 ————rrr———r——3
2 10000 | :
g i]
£ 1000 ﬁﬁﬁg -
e - =
2 i et 1
= 100 | ;—f:{ E
[} E - E
a F £ E
g L 71
S 10 ¢ 3
1 S Ay Rt PRI A RN I P
— o o
— o

—

Number of CPUs (Threads)

Figure 5.1: Atomic Increment Scalability on x86

non-atomic increment when a single thread is incrementing, and more than fen times
slower if two threads are incrementing.'

This poor performance should not be a surprise, given the discussion in Chapter 3,
nor should it be a surprise that the performance of atomic increment gets slower as
the number of CPUs and threads increase, as shown in Figure 5.1. In this figure, the
horizontal dashed line resting on the x axis is the ideal performance that would be
achieved by a perfectly scalable algorithm: with such an algorithm, a given increment
would incur the same overhead that it would in a single-threaded program. Atomic
increment of a single global variable is clearly decidedly non-ideal, and gets multiple
orders of magnitude worse with additional CPUs.

Quick Quiz 5.8: Why doesn’t the dashed line on the x axis meet the diagonal line at x = 1?
[|

Quick Quiz 5.9: But atomic increment is still pretty fast. And incrementing a single variable
in a tight loop sounds pretty unrealistic to me, after all, most of the program’s execution should
be devoted to actually doing work, not accounting for the work it has done! Why should I care
about making this go faster? W

! Interestingly enough, a pair of threads non-atomically incrementing a counter will
cause the counter to increase more quickly than a pair of threads atomically incrementing
the counter. Of course, if your only goal is to make the counter increase quickly, an easier
approach is to simply assign a large value to the counter. Nevertheless, there is likely to be a
role for algorithms that use carefully relaxed notions of correctness in order to gain greater
performance and scalability [And91, ACMSO03, Ungl1].

76 CHAPTER 5. COUNTING

ache Cache Cache Cach

\m@ hect Intefcmfy(

Figure 5.2: Data Flow For Global Atomic Increment

One one thousand.
Two one thousand.
Three one thousand...

Figure 5.3: Waiting to Count

For another perspective on global atomic increment, consider Figure 5.2. In order
for each CPU to get a chance to increment a given global variable, the cache line
containing that variable must circulate among all the CPUs, as shown by the red arrows.
Such circulation will take significant time, resulting in the poor performance seen in
Figure 5.1, which might be thought of as shown in Figure 5.3. The following sections
discuss high-performance counting, which avoids the delays inherent in such circulation.

Quick Quiz 5.10: But why can’t CPU designers simply ship the addition operation to the data,
avoiding the need to circulate the cache line containing the global variable being incremented?

5.2. STATISTICAL COUNTERS 77

Listing 5.3: Array-Based Per-Thread Statistical Counters
DEFINE_PER_THREAD (unsigned long, counter);

1

2

3 static __inline__ void inc_count(void)

4 {

5 unsigned long *p_counter = &__get_thread_var(counter);
6

7 WRITE_ONCE(*p_counter, *p_counter + 1);

8 }

9
10 static __inline__ unsigned long read_count(void)

n {

12 int t;

13 unsigned long sum = O;

14

15 for_each_thread(t)

16 sum += READ_ONCE(per_thread(counter, t));
17 return sum;

18}

5.2 Statistical Counters

Facts are stubborn things, but statistics are pliable.

Mark Twain

This section covers the common special case of statistical counters, where the count
is updated extremely frequently and the value is read out rarely, if ever. These will be
used to solve the network-packet counting problem posed in Quick Quiz 5.2.

5.2.1 Design

Statistical counting is typically handled by providing a counter per thread (or CPU, when
running in the kernel), so that each thread updates its own counter, as was foreshadowed
in Section 4.3.6. The aggregate value of the counters is read out by simply summing up
all of the threads’ counters, relying on the commutative and associative properties of
addition. This is an example of the Data Ownership pattern that will be introduced in
Section 6.3.4.

Quick Quiz 5.11: But doesn’t the fact that C’s “integers” are limited in size complicate things?

5.2.2 Array-Based Implementation

One way to provide per-thread variables is to allocate an array with one element per
thread (presumably cache aligned and padded to avoid false sharing).

[Quick Quiz 5.12: An array??? But doesn’t that limit the number of threads? W J

Such an array can be wrapped into per-thread primitives, as shown in Listing 5.3
(count_stat.c). Line 1 defines an array containing a set of per-thread counters of
type unsigned long named, creatively enough, counter.

Lines 3-8 show a function that increments the counters, using the __get_thread_
var () primitive to locate the currently running thread’s element of the counter
array. Because this element is modified only by the corresponding thread, non-atomic
increment suffices. However, this code uses WRITE_ONCE() to prevent destructive

78 CHAPTER 5. COUNTING

T e T e T e
Cachel| [ICackel|| |[ICachel| [ICackal

Interconnect Interconnect
~

=
\ /
Memory <—>| System Interconnect |<—> Memory

e ..

Z=
Interconnect Interconnect

UdCrie wdaclie wdaclie UdClrie
G4 GBUS GBUAa BV Z

Figure 5.4: Data Flow For Per-Thread Increment

compiler optimizations. For but one example, the compiler is within its rights to use a
to-be-stored-to location as temporary storage, thus writing what would be for all intents
and purposes garbage to that location just before doing the desired store. This could
of course be rather confusing to anything attempting to read out the count. The use of
WRITE_ONCE() prevents this optimization and others besides.

[Quick Quiz 5.13: What other nasty optimizations could GCC apply? H]

Lines 10-18 show a function that reads out the aggregate value of the counter, using
the for_each_thread () primitive to iterate over the list of currently running threads,
and using the per_thread() primitive to fetch the specified thread’s counter. This
code also uses READ_ONCE () to ensure that the compiler doesn’t optimize these loads
into oblivion. For but one example, a pair of consecutive calls to read_count ()
might be inlined, and an intrepid optimizer might notice that the same locations were
being summed and thus incorrectly conclude that it would be simply wonderful to sum
them once and use the resulting value twice. This sort of optimization might be rather
frustrating to people expecting later read_count () calls to return larger values. The
use of READ_ONCE () prevents this optimization and others besides.

‘ Quick Quiz 5.14: How does the per-thread counter variable in Listing 5.3 get initialized?
|

‘ Quick Quiz 5.15: How is the code in Listing 5.3 supposed to permit more than one counter?
|

This approach scales linearly with increasing number of updater threads invoking
inc_count (). As is shown by the green arrows on each CPU in Figure 5.4, the reason
for this is that each CPU can make rapid progress incrementing its thread’s variable,
without any expensive cross-system communication. As such, this section solves the
network-packet counting problem presented at the beginning of this chapter.

Quick Quiz 5.16: The read operation takes time to sum up the per-thread values, and
during that time, the counter could well be changing. This means that the value returned by
read_count () in Listing 5.3 will not necessarily be exact. Assume that the counter is being
incremented at rate r counts per unit time, and that read_count () ’s execution consumes 4
units of time. What is the expected error in the return value? W

5.2. STATISTICAL COUNTERS 79

However, this excellent update-side scalability comes at great read-side expense for
large numbers of threads. The next section shows one way to reduce read-side expense
while still retaining the update-side scalability.

5.2.3 Eventually Consistent Implementation

One way to retain update-side scalability while greatly improving read-side performance
is to weaken consistency requirements. The counting algorithm in the previous section
is guaranteed to return a value between the value that an ideal counter would have
taken on near the beginning of read_count ()’s execution and that near the end of
read_count ()’s execution. Eventual consistency [Vog09] provides a weaker guarantee:
in absence of calls to inc_count (), calls to read_count () will eventually return an
accurate count.

We exploit eventual consistency by maintaining a global counter. However, updaters
only manipulate their per-thread counters. A separate thread is provided to transfer
counts from the per-thread counters to the global counter. Readers simply access the
value of the global counter. If updaters are active, the value used by the readers will be
out of date, however, once updates cease, the global counter will eventually converge on
the true value—hence this approach qualifies as eventually consistent.

The implementation is shown in Listing 5.4 (count_stat_eventual.c). Lines 1-2
show the per-thread variable and the global variable that track the counter’s value, and
line 3 shows stopflag which is used to coordinate termination (for the case where
we want to terminate the program with an accurate counter value). The inc_count ()
function shown on lines 5-10 is similar to its counterpart in Listing 5.3. The read_
count () function shown on lines 12—15 simply returns the value of the global_count
variable.

However, the count_init () function on lines 36-46 creates the eventual () thread
shown on lines 17-34, which cycles through all the threads, summing the per-thread local
counter and storing the sum to the global_count variable. The eventual () thread
waits an arbitrarily chosen one millisecond between passes. The count_cleanup ()
function on lines 48-54 coordinates termination.

This approach gives extremely fast counter read-out while still supporting linear
counter-update performance. However, this excellent read-side performance and update-
side scalability comes at the cost of the additional thread running eventual ().

Quick Quiz 5.17: Why doesn’t inc_count () in Listing 5.4 need to use atomic instructions?
After all, we now have multiple threads accessing the per-thread counters! H

Quick Quiz 5.18: Won't the single global thread in the function eventual () of Listing 5.4
be just as severe a bottleneck as a global lock would be? H

Quick Quiz 5.19: Won’t the estimate returned by read_count () in Listing 5.4 become
increasingly inaccurate as the number of threads rises? H

Quick Quiz 5.20: Given that in the eventually-consistent algorithm shown in Listing 5.4 both
reads and updates have extremely low overhead and are extremely scalable, why would anyone
bother with the implementation described in Section 5.2.2, given its costly read-side code? H

Quick Quiz 5.21: What is the accuracy of the estimate returned by read_count () in
Listing 5.4? W

80 CHAPTER 5. COUNTING

Listing 5.4: Array-Based Per-Thread Eventually Consistent Counters

DEFINE_PER_THREAD (unsigned long, counter);
unsigned long global_count;
int stopflag;

{

1

2

3

4

5 static __inline__ void inc_count(void)

6

7 unsigned long *p_counter = &__get_thread_var(counter);
8

9

WRITE_ONCE(*p_counter, *p_counter + 1);

10}

11

12 static __inline__ unsigned long read_count(void)
13 {

14 return READ_ONCE(global_count) ;

15 }

16

17 void *eventual(void *arg)

18 {

19 int t;

20 unsigned long sum;

21

22 while (READ_ONCE(stopflag) < 3) {

23 sum = O;

24 for_each_thread(t)

25 sum += READ_ONCE(per_thread(counter, t));
26 WRITE_ONCE(global_count, sum);
27 poll(NULL, 0, 1);

28 if (READ_ONCE(stopflag)) {

29 smp_mb () ;

30 WRITE_ONCE(stopflag, stopflag + 1);
31 ¥

32 }

33 return NULL;

34}

35

36 void count_init(void)

37 {

38 int en;

39 thread_id_t tid;

40

41 en = pthread_create(&tid, NULL, eventual, NULL);
42 if (en != 0) {

43 fprintf (stderr, "pthread_create: %s\n", strerror(en));
44 exit (EXIT_FAILURE);

45 ¥

46}

47

48 void count_cleanup(void)

49 {

50 WRITE_ONCE(stopflag, 1);

51 while (READ_ONCE(stopflag) < 3)

52 poll(NULL, 0, 1);

53 smp_mb() H

54}

5.2. STATISTICAL COUNTERS 81

Listing 5.5: Per-Thread Statistical Counters

unsigned long __thread counter = 0;

unsigned long *counterp[NR_THREADS] = { NULL };
unsigned long finalcount = 0;

DEFINE_SPINLOCK (final_mutex);

static __inline__ void inc_count(void)
{

1
2
3
4
5
6
7
8 WRITE_ONCE(counter, counter + 1);
9

}

1l static __inline__ unsigned long read_count(void)

2 {

13 int t;

14 unsigned long sum;

15

16 spin_lock(&final_mutex);

17 sum = finalcount;

18 for_each_thread(t)

19 if (counterp[t] !'= NULL)
20 sum += READ_ONCE (*counterp[t]);
21 spin_unlock(&final_mutex) ;

22 return sum;

23 }

24

25 void count_register_thread(unsigned long *p)
26 {

27 int idx = smp_thread_id();

28

29 spin_lock(&final_mutex);

30 counterp[idx] = &counter;

31 spin_unlock(&final_mutex) ;

2}

33

34 void count_unregister_thread(int nthreadsexpected)
35 {

36 int idx = smp_thread_id();

37

38 spin_lock(&final_mutex);

39 finalcount += counter;

40 counterp[idx] = NULL;

41 spin_unlock(&final_mutex) ;

2 }

5.2.4 Per-Thread-Variable-Based Implementation

Fortunately, GCC provides an __thread storage class that provides per-thread storage.
This can be used as shown in Listing 5.5 (count_end.c) to implement a statistical
counter that not only scales, but that also incurs little or no performance penalty to
incrementers compared to simple non-atomic increment.

Lines 1-4 define needed variables: counter is the per-thread counter variable,
the counterp[] array allows threads to access each others’ counters, finalcount
accumulates the total as individual threads exit, and final _mutex coordinates between
threads accumulating the total value of the counter and exiting threads.

Quick Quiz 5.22: Why do we need an explicit array to find the other threads’ counters? Why
doesn’t GCC provide a per_thread() interface, similar to the Linux kernel’s per_cpu()
primitive, to allow threads to more easily access each others’ per-thread variables? H

The inc_count () function used by updaters is quite simple, as can be seen on
lines 6-9.

The read_count () function used by readers is a bit more complex. Line 16 acquires
a lock to exclude exiting threads, and line 21 releases it. Line 17 initializes the sum to
the count accumulated by those threads that have already exited, and lines 18-20 sum

82 CHAPTER 5. COUNTING

the counts being accumulated by threads currently running. Finally, line 22 returns the
sum.

Quick Quiz 5.23: Doesn’t the check for NULL on line 19 of Listing 5.5 add extra branch
mispredictions? Why not have a variable set permanently to zero, and point unused counter-
pointers to that variable rather than setting them to NULL? H

Quick Quiz 5.24: Why on earth do we need something as heavyweight as a lock guarding the
summation in the function read_count () in Listing 5.5? H

Lines 25-32 show the count_register_thread() function, which must be called
by each thread before its first use of this counter. This function simply sets up this
thread’s element of the counterp[] array to point to its per-thread counter variable.

Quick Quiz 5.25: Why on earth do we need to acquire the lock in count_register_
thread () in Listing 5.5? It is a single properly aligned machine-word store to a location that
no other thread is modifying, so it should be atomic anyway, right? W

Lines 34-42 show the count_unregister_thread() function, which must be
called prior to exit by each thread that previously called count_register_thread().
Line 38 acquires the lock, and line 41 releases it, thus excluding any calls to read_
count () as well as other calls to count_unregister_thread(). Line 39 adds this
thread’s counter to the global finalcount, and then line 40 NULLs out its counterp []
array entry. A subsequent call to read_count () will see the exiting thread’s count in
the global finalcount, and will skip the exiting thread when sequencing through the
counterp[] array, thus obtaining the correct total.

This approach gives updaters almost exactly the same performance as a non-atomic
add, and also scales linearly. On the other hand, concurrent reads contend for a single
global lock, and therefore perform poorly and scale abysmally. However, this is not
a problem for statistical counters, where incrementing happens often and readout
happens almost never. Of course, this approach is considerably more complex than the
array-based scheme, due to the fact that a given thread’s per-thread variables vanish
when that thread exits.

Quick Quiz 5.26: Fine, but the Linux kernel doesn’t have to acquire a lock when reading out
the aggregate value of per-CPU counters. So why should user-space code need to do this???

5.2.5 Discussion

These three implementations show that it is possible to obtain uniprocessor performance
for statistical counters, despite running on a parallel machine.

Quick Quiz 5.27: What fundamental difference is there between counting packets and counting
the total number of bytes in the packets, given that the packets vary in size? B

Quick Quiz 5.28: Given that the reader must sum all the threads’ counters, this could take
a long time given large numbers of threads. Is there any way that the increment operation
can remain fast and scalable while allowing readers to also enjoy reasonable performance and
scalability? H

Given what has been presented in this section, you should now be able to answer the
Quick Quiz about statistical counters for networking near the beginning of this chapter.

5.3. APPROXIMATE LIMIT COUNTERS 83

5.3 Approximate Limit Counters

An approximate answer to the right problem is worth
a good deal more than an exact answer to an
approximate problem.

John Tukey

Another special case of counting involves limit-checking. For example, as noted in
the approximate structure-allocation limit problem in Quick Quiz 5.3, suppose that
you need to maintain a count of the number of structures allocated in order to fail any
allocations once the number of structures in use exceeds a limit, in this case, 10,000.
Suppose further that these structures are short-lived, that this limit is rarely exceeded,
and that this limit is approximate in that it is OK to exceed it sometimes by some
bounded amount (see Section 5.4 if you instead need the limit to be exact).

5.3.1 Design

One possible design for limit counters is to divide the limit of 10,000 by the number
of threads, and give each thread a fixed pool of structures. For example, given 100
threads, each thread would manage its own pool of 100 structures. This approach is
simple, and in some cases works well, but it does not handle the common case where
a given structure is allocated by one thread and freed by another [MS93]. On the one
hand, if a given thread takes credit for any structures it frees, then the thread doing most
of the allocating runs out of structures, while the threads doing most of the freeing
have lots of credits that they cannot use. On the other hand, if freed structures are
credited to the CPU that allocated them, it will be necessary for CPUs to manipulate
each others’ counters, which will require expensive atomic instructions or other means
of communicating between threads.”

In short, for many important workloads, we cannot fully partition the counter. Given
that partitioning the counters was what brought the excellent update-side performance
for the three schemes discussed in Section 5.2, this might be grounds for some pessimism.
However, the eventually consistent algorithm presented in Section 5.2.3 provides an
interesting hint. Recall that this algorithm kept two sets of books, a per-thread counter
variable for updaters and a global_count variable for readers, with an eventual ()
thread that periodically updated global_count to be eventually consistent with the
values of the per-thread counter. The per-thread counter perfectly partitioned the
counter value, while global_count kept the full value.

For limit counters, we can use a variation on this theme where we partially partition
the counter. For example, consider four threads with each having not only a per-thread
counter, but also a per-thread maximum value (call it countermax).

But then what happens if a given thread needs to increment its counter, but counter
is equal to its countermax? The trick here is to move half of that thread’s counter
value to a globalcount, then increment counter. For example, if a given thread’s
counter and countermax variables were both equal to 10, we do the following:

1. Acquire a global lock.

2 That said, if each structure will always be freed by the same CPU (or thread) that
allocated it, then this simple partitioning approach works extremely well.

84 CHAPTER 5. COUNTING

2. Add five to globalcount.
3. To balance out the addition, subtract five from this thread’s counter.
4. Release the global lock.

5. Increment this thread’s counter, resulting in a value of six.

Although this procedure still requires a global lock, that lock need only be acquired
once for every five increment operations, greatly reducing that lock’s level of contention.
We can reduce this contention as low as we wish by increasing the value of countermax.
However, the corresponding penalty for increasing the value of countermax is reduced
accuracy of globalcount. To see this, note that on a four-CPU system, if countermax
is equal to ten, globalcount will be in error by at most 40 counts. In contrast, if
countermax is increased to 100, globalcount might be in error by as much as 400
counts.

This raises the question of just how much we care about globalcount’s deviation
from the aggregate value of the counter, where this aggregate value is the sum of
globalcount and each thread’s counter variable. The answer to this question depends
on how far the aggregate value is from the counter’s limit (call it globalcountmax).
The larger the difference between these two values, the larger countermax can be
without risk of exceeding the globalcountmax limit. This means that the value of a
given thread’s countermax variable can be set based on this difference. When far from
the limit, the countermax per-thread variables are set to large values to optimize for
performance and scalability, while when close to the limit, these same variables are set
to small values to minimize the error in the checks against the globalcountmax limit.

This design is an example of parallel fastpath, which is an important design pattern
in which the common case executes with no expensive instructions and no interactions
between threads, but where occasional use is also made of a more conservatively
designed (and higher overhead) global algorithm. This design pattern is covered in
more detail in Section 6.4.

5.3.2 Simple Limit Counter Implementation

Listing 5.6 shows both the per-thread and global variables used by this implementation.
The per-thread counter and countermax variables are the corresponding thread’s local
counter and the upper bound on that counter, respectively. The globalcountmax vari-
able on line 3 contains the upper bound for the aggregate counter, and the globalcount
variable on line 4 is the global counter. The sum of globalcount and each thread’s
counter gives the aggregate value of the overall counter. The globalreserve variable
on line 5 is the sum of all of the per-thread countermax variables. The relationship
among these variables is shown by Figure 5.5:

1. The sum of globalcount and globalreserve must be less than or equal to
globalcountmax.

2. The sum of all threads’ countermax values must be less than or equal to
globalreserve.

3. Each thread’s counter must be less than or equal to that thread’s countermax.

5.3. APPROXIMATE LIMIT COUNTERS 85

Listing 5.6: Simple Limit Counter Variables

unsigned long __thread counter = 0;

unsigned long __thread countermax = 0;
unsigned long globalcountmax = 10000;

unsigned long globalcount = 0;

unsigned long globalreserve = 0;

unsigned long *counterp[NR_THREADS] = { NULL };
DEFINE_SPINLOCK (gblcnt_mutex);

R T I S

Figure 5.5: Simple Limit Counter Variable Relationships

Each element of the counterp[] array references the corresponding thread’s
counter variable, and, finally, the gblcnt_mutex spinlock guards all of the global
variables, in other words, no thread is permitted to access or modify any of the global
variables unless it has acquired gblcnt_mutex.

Listing 5.7 shows the add_count (), sub_count (), and read_count () functions
(count_lim.c).

Quick Quiz 5.29: Why does Listing 5.7 provide add_count () and sub_count () instead of
the inc_count () and dec_count () interfaces show in Section 5.2? M

Lines 1-18 show add_count (), which adds the specified value delta to the counter.
Line 3 checks to see if there is room for delta on this thread’s counter, and, if so,
line 4 adds it and line 5 returns success. This is the add_counter () fastpath, and it
does no atomic operations, references only per-thread variables, and should not incur
any cache misses.

Quick Quiz 5.30: What is with the strange form of the condition on line 3 of Listing 5.7?
Why not the more intuitive form of the fastpath shown in Listing 5.8? W

If the test on line 3 fails, we must access global variables, and thus must acquire
gblcnt_mutex on line 7, which we release on line 11 in the failure case or on line 16
in the success case. Line 8 invokes globalize_count (), shown in Listing 5.9,
which clears the thread-local variables, adjusting the global variables as needed, thus
simplifying global processing. (But don’t take my word for it, try coding it yourself!)

Edition.2-rc3

86 CHAPTER 5. COUNTING

Listing 5.7: Simple Limit Counter Add, Subtract, and Read

I static __inline__ int add_count(unsigned long delta)
2 {

3 if (countermax - counter >= delta) {

4 WRITE_ONCE(counter, counter + delta);
5 return 1;

6 ¥

7 spin_lock(&gblcnt_mutex) ;

8 globalize_count();

9 if (globalcountmax -

10 globalcount - globalreserve < delta) {
11 spin_unlock(&gblcnt_mutex) ;

12 return 0;

13 }

14 globalcount += delta;

15 balance_count();

16 spin_unlock(&gblcnt_mutex) ;

17 return 1;

18}

19

20 static __inline__ int sub_count(unsigned long delta)
a1 {

22 if (counter >= delta) {

23 WRITE_ONCE(counter, counter - delta);
24 return 1;

25 }

26 spin_lock(&gblcnt_mutex);

27 globalize_count();

28 if (globalcount < delta) {

29 spin_unlock(&gblcnt_mutex) ;

30 return 0;

31 }

32 globalcount -= delta;

33 balance_count();

34 spin_unlock(&gblcnt_mutex);

35 return 1;

36 ¥

37

38 static __inline__ unsigned long read_count(void)

39 {

40 int t;

41 unsigned long sum;

42

43 spin_lock(&gblcnt_mutex) ;

44 sum = globalcount;

45 for_each_thread(t)

46 if (counterp[t] != NULL)

47 sum += READ_ONCE (*counterp[t]);
48 spin_unlock(&gblcnt_mutex);

49 return sum;

50 ¥

Listing 5.8: Intuitive Fastpath

if (counter + delta <= countermax) {
WRITE_ONCE(counter, counter + delta);
return 1;

o v AW

5.3. APPROXIMATE LIMIT COUNTERS 87

Lines 9 and 10 check to see if addition of delta can be accommodated, with the
meaning of the expression preceding the less-than sign shown in Figure 5.5 as the
difference in height of the two red (leftmost) bars. If the addition of delta cannot
be accommodated, then line 11 (as noted earlier) releases gblcnt_mutex and line 12
returns indicating failure.

Otherwise, we take the slowpath. Line 14 adds delta to globalcount, and then
line 15 invokes balance_count () (shown in Listing 5.9) in order to update both the
global and the per-thread variables. This call to balance_count () will usually set this
thread’s countermax to re-enable the fastpath. Line 16 then releases gblcnt_mutex
(again, as noted earlier), and, finally, line 17 returns indicating success.

Quick Quiz 5.31: Why does globalize_count () zero the per-thread variables, only to
later call balance_count () to refill them in Listing 5.7? Why not just leave the per-thread
variables non-zero? M

Lines 20-36 show sub_count (), which subtracts the specified delta from the
counter. Line 22 checks to see if the per-thread counter can accommodate this
subtraction, and, if so, line 23 does the subtraction and line 24 returns success. These
lines form sub_count ()’s fastpath, and, as with add_count (), this fastpath executes
no costly operations.

If the fastpath cannot accommodate subtraction of delta, execution proceeds to the
slowpath on lines 26-35. Because the slowpath must access global state, line 26 acquires
gblcnt_mutex, which is released either by line 29 (in case of failure) or by line 34 (in
case of success). Line 27 invokes globalize_count (), shown in Listing 5.9, which
again clears the thread-local variables, adjusting the global variables as needed. Line 28
checks to see if the counter can accommodate subtracting delta, and, if not, line 29
releases gblcnt_mutex (as noted earlier) and line 30 returns failure.

Quick Quiz 5.32: Given that globalreserve counted against us in add_count (), why
doesn’t it count for us in sub_count () in Listing 5.7? W

Quick Quiz 5.33: Suppose that one thread invokes add_count () shown in Listing 5.7, and
then another thread invokes sub_count (). Won’t sub_count () return failure even though
the value of the counter is non-zero? W

If, on the other hand, line 28 finds that the counter can accommodate subtracting
delta, we complete the slowpath. Line 32 does the subtraction and then line 33 invokes
balance_count () (shown in Listing 5.9) in order to update both global and per-thread
variables (hopefully re-enabling the fastpath). Then line 34 releases gblcnt_mutex,
and line 35 returns success.

Quick Quiz 5.34: Why have both add_count () and sub_count () in Listing 5.7? Why not
simply pass a negative number to add_count ()? H

Lines 38-50 show read_count (), which returns the aggregate value of the counter. It
acquires gblcnt_mutex on line 43 and releases it on line 48, excluding global operations
from add_count () and sub_count (), and, as we will see, also excluding thread
creation and exit. Line 44 initializes local variable sum to the value of globalcount,
and then the loop spanning lines 45—47 sums the per-thread counter variables. Line 49
then returns the sum.

Listing 5.9 shows a number of utility functions used by the add_count (), sub_
count (), and read_count () primitives shown in Listing 5.7.

88

CHAPTER 5. COUNTING

Listing 5.9: Simple Limit Counter Utility Functions

1
2
3
4
5
6
7
8
9

10
11

12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29

s
{

}

static

{

}

tatic

__inline__ void globalize_count(void)

globalcount += counter;
counter = 0;

globalreserve -= countermax;
countermax = 0;

__inline__ void balance_count(void)

countermax = globalcountmax -
globalcount - globalreserve;

countermax /= num_online_threads();
globalreserve += countermax;
counter = countermax / 2;
if (counter > globalcount)

counter = globalcount;
globalcount -= counter;

void count_register_thread(void)

{

}

int idx = smp_thread_id();

spin_lock(&gblcnt_mutex) ;
counterp[idx] = &counter;
spin_unlock(&gblcnt_mutex) ;

30 void count_unregister_thread(int nthreadsexpected)

31
32
33
34
35
36
37
38

{

int idx = smp_thread_id();

spin_lock(&gblcnt_mutex);
globalize_count();
counterp[idx] = NULL;
spin_unlock(&gblcnt_mutex);

5.3. APPROXIMATE LIMIT COUNTERS 89

Lines 1-7 show globalize_count (), which zeros the current thread’s per-thread
counters, adjusting the global variables appropriately. It is important to note that this
function does not change the aggregate value of the counter, but instead changes how
the counter’s current value is represented. Line 3 adds the thread’s counter variable to
globalcount, and line 4 zeroes counter. Similarly, line 5 subtracts the per-thread
countermax from globalreserve, and line 6 zeroes countermax. It is helpful to
refer to Figure 5.5 when reading both this function and balance_count (), which is
next.

Lines 9-19 show balance_count (), which is roughly speaking the inverse of
globalize_count (). This function’s job is to set the current thread’s countermax
variable to the largest value that avoids the risk of the counter exceeding the
globalcountmax limit. Changing the current thread’s countermax variable of course
requires corresponding adjustments to counter, globalcount and globalreserve,
as can be seen by referring back to Figure 5.5. By doing this, balance_count ()
maximizes use of add_count () ’s and sub_count () ’s low-overhead fastpaths. As with
globalize_count (), balance_count () is not permitted to change the aggregate
value of the counter.

Lines 11-13 compute this thread’s share of that portion of globalcountmax that
is not already covered by either globalcount or globalreserve, and assign the
computed quantity to this thread’s countermax. Line 14 makes the corresponding
adjustment to globalreserve. Line 15 sets this thread’s counter to the middle of
the range from zero to countermax. Line 16 checks to see whether globalcount can
in fact accommodate this value of counter, and, if not, line 17 decreases counter
accordingly. Finally, in either case, line 18 makes the corresponding adjustment to
globalcount.

Quick Quiz 5.35: Why set counter to countermax / 2inline 15 of Listing 5.9? Wouldn’t
it be simpler to just take countermax counts? W

It is helpful to look at a schematic depicting how the relationship of the counters
changes with the execution of first globalize_count () and then balance_count, as
shown in Figure 5.6. Time advances from left to right, with the leftmost configuration
roughly that of Figure 5.5. The center configuration shows the relationship of these
same counters after globalize_count () is executed by thread 0. As can be seen from
the figure, thread 0’s counter (“c 0” in the figure) is added to globalcount, while the
value of globalreserve is reduced by this same amount. Both thread 0’s counter
and its countermax (“cm 0” in the figure) are reduced to zero. The other three threads’
counters are unchanged. Note that this change did not affect the overall value of the
counter, as indicated by the bottommost dotted line connecting the leftmost and center
configurations. In other words, the sum of globalcount and the four threads’ counter
variables is the same in both configurations. Similarly, this change did not affect the
sum of globalcount and globalreserve, as indicated by the upper dotted line.

The rightmost configuration shows the relationship of these counters after balance_
count () is executed, again by thread 0. One-quarter of the remaining count, denoted
by the vertical line extending up from all three configurations, is added to thread 0’s
countermax and half of that to thread 0’s counter. The amount added to thread 0’s
counter is also subtracted from globalcount in order to avoid changing the overall
value of the counter (which is again the sum of globalcount and the three threads’
counter variables), again as indicated by the lowermost of the two dotted lines
connecting the center and rightmost configurations. The globalreserve variable

90 CHAPTER 5. COUNTING

globalize_count () balance_count ()

Figure 5.6: Schematic of Globalization and Balancing

is also adjusted so that this variable remains equal to the sum of the four threads’
countermax variables. Because thread 0’s counter is less than its countermax,
thread O can once again increment the counter locally.

Quick Quiz 5.36: In Figure 5.6, even though a quarter of the remaining count up to the limit
is assigned to thread 0, only an eighth of the remaining count is consumed, as indicated by the
uppermost dotted line connecting the center and the rightmost configurations. Why is that?

Lines 21-28 show count_register_thread(), which sets up state for newly
created threads. This function simply installs a pointer to the newly created thread’s
counter variable into the corresponding entry of the counterp[] array under the
protection of gblcnt_mutex.

Finally, lines 30-38 show count_unregister_thread(), which tears down state
for a soon-to-be-exiting thread. Line 34 acquires gblcnt_mutex and line 37 releases
it. Line 35 invokes globalize_count () to clear out this thread’s counter state, and
line 36 clears this thread’s entry in the counterp[] array.

5.3.3 Simple Limit Counter Discussion

This type of counter is quite fast when aggregate values are near zero, with some overhead

due to the comparison and branch in both add_count () ’s and sub_count () ’s fastpaths.

However, the use of a per-thread countermax reserve means that add_count () can

fail even when the aggregate value of the counter is nowhere near globalcountmax.

Similarly, sub_count () can fail even when the aggregate value of the counter is
nowhere near zero.

In many cases, this is unacceptable. Even if the globalcountmax is intended to be
an approximate limit, there is usually a limit to exactly how much approximation can be

Edition.2-rc3

5.4. EXACT LIMIT COUNTERS 91

Listing 5.10: Approximate Limit Counter Variables

I unsigned long __thread counter = 0;

2 unsigned long __thread countermax = 0;
3 unsigned long globalcountmax = 10000;
4 unsigned long globalcount = 0;

5 unsigned long globalreserve = 0;

6

7

8

unsigned long *counterp[NR_THREADS] = { NULL };
DEFINE_SPINLOCK (gblcnt_mutex);
#define MAX_COUNTERMAX 100

Listing 5.11: Approximate Limit Counter Balancing

| static void balance_count (void)

2 {

3 countermax = globalcountmax -

4 globalcount - globalreserve;
5 countermax /= num_online_threads();

6 if (countermax > MAX_COUNTERMAX)

7 countermax = MAX_COUNTERMAX;

8 globalreserve += countermax;

9 counter = countermax / 2;

10 if (counter > globalcount)

11 counter = globalcount;
12 globalcount -= counter;

13}

tolerated. One way to limit the degree of approximation is to impose an upper limit on
the value of the per-thread countermax instances. This task is undertaken in the next
section.

5.3.4 Approximate Limit Counter Implementation

Because this implementation (count_lim_app. c) is quite similar to that in the previous
section (Listings 5.6, 5.7, and 5.9), only the changes are shown here. Listing 5.10 is
identical to Listing 5.6, with the addition of MAX_COUNTERMAX, which sets the maximum
permissible value of the per-thread countermax variable.

Similarly, Listing 5.11 is identical to the balance_count () function in Listing 5.9,
with the addition of lines 6 and 7, which enforce the MAX_COUNTERMAX limit on the
per-thread countermax variable.

5.3.5 Approximate Limit Counter Discussion

These changes greatly reduce the limit inaccuracy seen in the previous version, but
present another problem: any given value of MAX_COUNTERMAX will cause a workload-
dependent fraction of accesses to fall off the fastpath. As the number of threads increase,
non-fastpath execution will become both a performance and a scalability problem.
However, we will defer this problem and turn instead to counters with exact limits.

5.4 Exact Limit Counters

Exactitude can be expensive. Spend wisely.

Unknown

To solve the exact structure-allocation limit problem noted in Quick Quiz 5.4, we need a
limit counter that can tell exactly when its limits are exceeded. One way of implementing

92 CHAPTER 5. COUNTING

Listing 5.12: Atomic Limit Counter Variables and Access Functions

| atomic_t __thread counterandmax = ATOMIC_INIT(O);
2 unsigned long globalcountmax = 1 << 25;

3 unsigned long globalcount = 0;

4 unsigned long globalreserve = 0;

5 atomic_t *counterp[NR_THREADS] = { NULL };

6

7

8

9

DEFINE_SPINLOCK (gblcnt_mutex) ;
#define CM_BITS (sizeof (atomic_t) * 4)
#define MAX_COUNTERMAX ((1 << CM_BITS) - 1)

10 static inline__ void

11 split_counterandmax_int(int cami, int *c, int *cm)

2 {

13 *c = (cami >> CM_BITS) & MAX_COUNTERMAX;
14 *cm = cami & MAX_COUNTERMAX;

15 }

17 static __inline__ void
18 split_counterandmax(atomic_t *cam, int *old, int *c, int *cm)

19 {

20 unsigned int cami = atomic_read(cam);
21

22 *0ld = camij;

23 split_counterandmax_int(cami, ¢, cm);
24 }

25

2 static __inline__ int merge_counterandmax(int c, int cm)
27 {

28 unsigned int cami;

29

30 cami = (c << CM_BITS) | cm;

31 return ((int)cami);

2}

such a limit counter is to cause threads that have reserved counts to give them up. One
way to do this is to use atomic instructions. Of course, atomic instructions will slow
down the fastpath, but on the other hand, it would be silly not to at least give them a try.

5.4.1 Atomic Limit Counter Implementation

Unfortunately, if one thread is to safely remove counts from another thread, both threads
will need to atomically manipulate that thread’s counter and countermax variables.
The usual way to do this is to combine these two variables into a single variable, for
example, given a 32-bit variable, using the high-order 16 bits to represent counter and
the low-order 16 bits to represent countermax.

Quick Quiz 5.37: Why is it necessary to atomically manipulate the thread’s counter and
countermax variables as a unit? Wouldn’t it be good enough to atomically manipulate them
individually? H

The variables and access functions for a simple atomic limit counter are shown in
Listing 5.12 (count_lim_atomic.c). The counter and countermax variables in
earlier algorithms are combined into the single variable counterandmax shown on
line 1, with counter in the upper half and countermax in the lower half. This variable
is of type atomic_t, which has an underlying representation of int.

Lines 2-6 show the definitions for globalcountmax, globalcount,
globalreserve, counterp, and gblcnt_mutex, all of which take on roles simi-
lar to their counterparts in Listing 5.10. Line 7 defines CM_BITS, which gives the
number of bits in each half of counterandmax, and line 8 defines MAX_COUNTERMAX,
which gives the maximum value that may be held in either half of counterandmax.

5.4. EXACT LIMIT COUNTERS 93

[Quick Quiz 5.38: In what way does line 7 of Listing 5.12 violate the C standard? H J

Lines 10-15 show the split_counterandmax_int () function, which, when given
the underlying int from the atomic_t counterandmax variable, splits it into its
counter (c) and countermax (cm) components. Line 13 isolates the most-significant
half of this int, placing the result as specified by argument c, and line 14 isolates the
least-significant half of this int, placing the result as specified by argument cm.

Lines 17-24 show the split_counterandmax() function, which picks up the
underlying int from the specified variable on line 20, stores it as specified by the old
argument on line 22, and then invokes split_counterandmax_int () to split it on
line 23.

Quick Quiz 5.39: Given that there is only one counterandmax variable, why bother passing
in a pointer to it on line 18 of Listing 5.12? W

Lines 26-32 show the merge_counterandmax () function, which can be thought
of as the inverse of split_counterandmax(). Line 30 merges the counter and
countermax values passed in ¢ and cm, respectively, and returns the result.

Quick Quiz 5.40: Why does merge_counterandmax () in Listing 5.12 return an int rather
than storing directly into an atomic_t? H

Listing 5.13 shows the add_count () and sub_count () functions.

Lines 1-32 show add_count (), whose fastpath spans lines 8—15, with the remainder
of the function being the slowpath. Lines 8—14 of the fastpath form a compare-and-swap
(CAS) loop, with the atomic_cmpxchg() primitives on lines 13—14 performing the
actual CAS. Line 9 splits the current thread’s counterandmax variable into its counter
(in c) and countermax (in cm) components, while placing the underlying int into old.
Line 10 checks whether the amount delta can be accommodated locally (taking care
to avoid integer overflow), and if not, line 11 transfers to the slowpath. Otherwise,
line 12 combines an updated counter value with the original countermax value into
new. The atomic_cmpxchg() primitive on lines 13—14 then atomically compares this
thread’s counterandmax variable to old, updating its value to new if the comparison
succeeds. If the comparison succeeds, line 15 returns success, otherwise, execution
continues in the loop at line 8.

Quick Quiz 5.41: Yecch! Why the ugly goto on line 11 of Listing 5.13? Haven’t you heard
of the break statement???

Quick Quiz 5.42: Why would the atomic_cmpxchg () primitive at lines 13—14 of Listing 5.13
ever fail? After all, we picked up its old value on line 9 and have not changed it! H

Lines 16-31 of Listing 5.13 show add_count () ’s slowpath, which is protected by
gblcnt_mutex, which is acquired on line 17 and released on lines 24 and 30. Line 18
invokes globalize_count (), which moves this thread’s state to the global counters.
Lines 19-20 check whether the delta value can be accommodated by the current
global state, and, if not, line 21 invokes flush_local_count () to flush all threads’
local state to the global counters, and then lines 22-23 recheck whether delta can be
accommodated. If, after all that, the addition of delta still cannot be accommodated,
then line 24 releases gblcnt_mutex (as noted earlier), and then line 25 returns failure.

Otherwise, line 28 adds delta to the global counter, line 29 spreads counts to the
local state if appropriate, line 30 releases gblcnt_mutex (again, as noted earlier), and
finally, line 31 returns success.

94 CHAPTER 5. COUNTING

Listing 5.13: Atomic Limit Counter Add and Subtract

1 int add_count(unsigned long delta)

2 {

3 int c;

4 int cm;

5 int old;

6 int new;

5

8 do {

9 split_counterandmax (&counterandmax, &old, &c, &cm);
10 if (delta > MAX_COUNTERMAX || c + delta > cm)
11 goto slowpath;

12 new = merge_counterandmax(c + delta, cm);
13 } while (atomic_cmpxchg(&counterandmax,

14 old, new) != old);
15 return 1;

16 slowpath:

17 spin_lock(&gblcnt_mutex) ;

18 globalize_count();

19 if (globalcountmax - globalcount -

20 globalreserve < delta) {

21 flush_local_count();

22 if (globalcountmax - globalcount -
23 globalreserve < delta) {

24 spin_unlock(&gblcnt_mutex);
25 return 0;

26 }

27 }

28 globalcount += delta;

29 balance_count();

30 spin_unlock(&gblcnt_mutex) ;

31 return 1;

2}

33

34 int sub_count(unsigned long delta)

35 {

36 int c;

37 int cm;

38 int old;

39 int new;

40

41 do {

) split_counterandmax (&counterandmax, &old, &c, &cm);
43 if (delta > c)

44 goto slowpath;

45 new = merge_counterandmax(c - delta, cm);
46 } while (atomic_cmpxchg(&counterandmax,

47 old, new) != old);
48 return 1;

49 slowpath:

50 spin_lock(&gblcnt_mutex) ;

51 globalize_count () ;

52 if (globalcount < delta) {

53 flush_local_count();

54 if (globalcount < delta) {

55 spin_unlock(&gblcnt_mutex) ;
56 return 0;

57 ¥

58 }

59 globalcount -= delta;

60 balance_count();

61 spin_unlock(&gblcnt_mutex) ;

62 return 1;

63 }

5.4. EXACT LIMIT COUNTERS 95

Listing 5.14: Atomic Limit Counter Read

| unsigned long read_count(void)

2 {

3 int c;

4 int cm;

5 int old;

6 int t;

7 unsigned long sum;

8

9 spin_lock(&gblcnt_mutex) ;

10 sum = globalcount;

1 for_each_thread(t)

12 if (counterp[t] != NULL) {
13 split_counterandmax (counterp[t], &old, &c, &cm);
14 sum += c;

15 ¥

16 spin_unlock(&gblcnt_mutex) ;

17 return sum;

18}

Lines 34-63 of Listing 5.13 show sub_count (), which is structured similarly to
add_count (), having a fastpath on lines 41-48 and a slowpath on lines 49-62. A
line-by-line analysis of this function is left as an exercise to the reader.

Listing 5.14 shows read_count (). Line 9 acquires gblcnt_mutex and line 16
releases it. Line 10 initializes local variable sum to the value of globalcount, and
the loop spanning lines 11-15 adds the per-thread counters to this sum, isolating each
per-thread counter using split_counterandmax on line 13. Finally, line 17 returns
the sum.

Listings 5.15 and 5.16 show the utility functions globalize_count (), flush_
local_count(), balance_count(), count_register_thread(), and count_
unregister_thread(). The code for globalize_count () is shown on lines 1-12,
of Listing 5.15 and is similar to that of previous algorithms, with the addition of line 7,
which is now required to split out counter and countermax from counterandmax.

The code for flush_local_count (), which moves all threads’ local counter state
to the global counter, is shown on lines 14-32. Line 22 checks to see if the value of
globalreserve permits any per-thread counts, and, if not, line 23 returns. Otherwise,
line 24 initializes local variable zero to a combined zeroed counter and countermax.
The loop spanning lines 25-31 sequences through each thread. Line 26 checks to see if
the current thread has counter state, and, if so, lines 27-30 move that state to the global
counters. Line 27 atomically fetches the current thread’s state while replacing it with
zero. Line 28 splits this state into its counter (in local variable c) and countermax (in
local variable cm) components. Line 29 adds this thread’s counter to globalcount,
while line 30 subtracts this thread’s countermax from globalreserve.

Quick Quiz 5.43: What stops a thread from simply refilling its counterandmax variable
immediately after f1ush_local_count () on line 14 of Listing 5.15 empties it? W

Quick Quiz 5.44: What prevents concurrent execution of the fastpath of either add_count ()
or sub_count () from interfering with the counterandmax variable while flush_local_
count () is accessing it on line 27 of Listing 5.15 empties it? H

Lines 1-22 on Listing 5.16 show the code for balance_count (), which refills
the calling thread’s local counterandmax variable. This function is quite similar
to that of the preceding algorithms, with changes required to handle the merged
counterandmax variable. Detailed analysis of the code is left as an exercise for the

96 CHAPTER 5. COUNTING

Listing 5.15: Atomic Limit Counter Utility Functions 1

I static void globalize_count(void)

2 {

3 int c;

4 int cm;

5 int old;

6

7 split_counterandmax (&counterandmax, &old, &c, &cm);
8 globalcount += c;

9 globalreserve -= cm;

10 old = merge_counterandmax(0, 0);

11 atomic_set (&counterandmax, old);
12}

13

14 static void flush_local_count(void)

15 {

16 int c;

17 int cm;

18 int old;

19 int t;

20 int zero;

21

2 if (globalreserve == 0)

23 return;

24 zero = merge_counterandmax(0, 0);

25 for_each_thread(t)

26 if (counterp[t] != NULL) {
27 old = atomic_xchg(counterp[t], zero);
28 split_counterandmax_int (old, &c, &cm);
29 globalcount += c;

30 globalreserve -= cm;
31 }

2}

reader, as it is with the count_register_thread () function starting on line 24 and
the count_unregister_thread() function starting on line 33.

Quick Quiz 5.45: Given that the atomic_set () primitive does a simple store to the specified
atomic_t, how can line 21 of balance_count () in Listing 5.16 work correctly in face of
concurrent flush_local_count () updates to this variable? W

The next section qualitatively evaluates this design.

5.4.2 Atomic Limit Counter Discussion

This is the first implementation that actually allows the counter to be run all the way
to either of its limits, but it does so at the expense of adding atomic operations to the
fastpaths, which slow down the fastpaths significantly on some systems. Although some
workloads might tolerate this slowdown, it is worthwhile looking for algorithms with
better read-side performance. One such algorithm uses a signal handler to steal counts
from other threads. Because signal handlers run in the context of the signaled thread,
atomic operations are not necessary, as shown in the next section.

Quick Quiz 5.46: But signal handlers can be migrated to some other CPU while running.
Doesn’t this possibility require that atomic instructions and memory barriers are required to
reliably communicate between a thread and a signal handler that interrupts that thread? H

5.4. EXACT LIMIT COUNTERS 97

Listing 5.16: Atomic Limit Counter Utility Functions 2

| static void balance_count (void)

2 {

3 int c;

4 int cm;

5 int old;

6 unsigned long limit;

7

8 limit = globalcountmax - globalcount -
9 globalreserve;

10 limit /= num_online_threads();
11 if (limit > MAX_COUNTERMAX)

12 cm = MAX_COUNTERMAX;

13 else

14 cm = limit;

15 globalreserve += cm;

16 c=cm / 2;

17 if (c > globalcount)

18 c = globalcount;

19 globalcount -= c;

20 old = merge_counterandmax(c, cm);
21 atomic_set (&counterandmax, old);
2 }

23

24 void count_register_thread(void)

25 {

26 int idx = smp_thread_id();

27

28 spin_lock(&gblcnt_mutex);

29 counterp[idx] = &counterandmax;
30 spin_unlock(&gblcnt_mutex) ;
31}

32

33 void count_unregister_thread(int nthreadsexpected)
34 {

35 int idx = smp_thread_id();

36

37 spin_lock(&gblcnt_mutex);

38 globalize_count();

39 counterp[idx] = NULL;

40 spin_unlock(&gblcnt_mutex) ;
4}

5.4.3 Signal-Theft Limit Counter Design

Even though per-thread state will now be manipulated only by the corresponding thread,
there will still need to be synchronization with the signal handlers. This synchronization
is provided by the state machine shown in Figure 5.7.

The state machine starts out in the IDLE state, and when add_count () or sub_
count () find that the combination of the local thread’s count and the global count
cannot accommodate the request, the corresponding slowpath sets each thread’s theft
state to REQ (unless that thread has no count, in which case it transitions directly to
READY). Only the slowpath, which holds the gblcnt_mutex lock, is permitted to
transition from the IDLE state, as indicated by the green color.® The slowpath then sends
a signal to each thread, and the corresponding signal handler checks the corresponding
thread’s theft and counting variables. If the theft state is not REQ, then the signal
handler is not permitted to change the state, and therefore simply returns. Otherwise, if
the counting variable is set, indicating that the current thread’s fastpath is in progress,
the signal handler sets the theft state to ACK, otherwise to READY.

3 For those with black-and-white versions of this book, IDLE and READY are green,
REQ is red, and ACK is blue.

98 CHAPTER 5. COUNTING

Figure 5.7: Signal-Theft State Machine

If the theft state is ACK, only the fastpath is permitted to change the theft state,
as indicated by the blue color. When the fastpath completes, it sets the theft state to
READY.

Once the slowpath sees a thread’s theft state is READY, the slowpath is permitted
to steal that thread’s count. The slowpath then sets that thread’s theft state to IDLE.

[Quick Quiz 5.47: In Figure 5.7, why is the REQ theft state colored red? H J

Quick Quiz 5.48: In Figure 5.7, what is the point of having separate REQ and ACK theft
states? Why not simplify the state machine by collapsing them into a single REQACK state?
Then whichever of the signal handler or the fastpath gets there first could set the state to READY.
|

5.4.4 Signal-Theft Limit Counter Implementation

Listing 5.17 (count_lim_sig.c) shows the data structures used by the signal-theft
based counter implementation. Lines 1-7 define the states and values for the per-thread
theft state machine described in the preceding section. Lines 8—17 are similar to earlier
implementations, with the addition of lines 14 and 15 to allow remote access to a
thread’s countermax and theft variables, respectively.

Listing 5.18 shows the functions responsible for migrating counts between per-thread
variables and the global variables. Lines 1-7 show globalize_count (), which is
identical to earlier implementations. Lines 9—19 show flush_local_count_sig(),
which is the signal handler used in the theft process. Lines 11 and 12 check to see if the
theft state is REQ, and, if not returns without change. Line 13 executes a memory
barrier to ensure that the sampling of the theft variable happens before any change to
that variable. Line 14 sets the theft state to ACK, and, if line 15 sees that this thread’s
fastpaths are not running, line 16 sets the theft state to READY.

5.4. EXACT LIMIT COUNTERS 99

Listing 5.17: Signal-Theft Limit Counter Data

#define THEFT_IDLE O
#define THEFT_REQ 1
#define THEFT_ACK 2
#define THEFT_READY 3

int __thread theft = THEFT_IDLE;

int __thread counting = 0;

unsigned long __thread counter = 0;

9 unsigned long __thread countermax = 0;

10 unsigned long globalcountmax = 10000;

11 unsigned long globalcount = 0;

12 unsigned long globalreserve = 0;

13 unsigned long *counterp[NR_THREADS] = { NULL };
14 unsigned long *countermaxp[NR_THREADS] = { NULL };
15 int *theftp[NR_THREADS] = { NULL };

16 DEFINE_SPINLOCK(gblcnt_mutex);

17 #define MAX_COUNTERMAX 100

1
2
3
4
5
6
7
8

Quick Quiz 5.49: In Listing 5.18’s function flush_local_count_sig(), why are there
READ_ONCE () and WRITE_ONCE () wrappers around the uses of the theft per-thread variable?
|

Lines 21-49 show flush_local_count (), which is called from the slowpath to
flush all threads’ local counts. The loop spanning lines 26—-34 advances the theft state
for each thread that has local count, and also sends that thread a signal. Line 27 skips
any non-existent threads. Otherwise, line 28 checks to see if the current thread holds
any local count, and, if not, line 29 sets the thread’s theft state to READY and line 30
skips to the next thread. Otherwise, line 32 sets the thread’s theft state to REQ and
line 33 sends the thread a signal.

Quick Quiz 5.50: In Listing 5.18, why is it safe for line 28 to directly access the other thread’s
countermax variable? W

Quick Quiz 5.51: In Listing 5.18, why doesn’t line 33 check for the current thread sending
itself a signal? WM

Quick Quiz 5.52: The code shown in Listings 5.17 and 5.18 works with GCC and POSIX.
What would be required to make it also conform to the ISO C standard? H

The loop spanning lines 35-48 waits until each thread reaches READY state, then steals
that thread’s count. Lines 36-37 skip any non-existent threads, and the loop spanning
lines 38—42 waits until the current thread’s theft state becomes READY. Line 39
blocks for a millisecond to avoid priority-inversion problems, and if line 40 determines
that the thread’s signal has not yet arrived, line 41 resends the signal. Execution reaches
line 43 when the thread’s theft state becomes READY, so lines 43—46 do the thieving.
Line 47 then sets the thread’s theft state back to IDLE.

[Quick Quiz 5.53: In Listing 5.18, why does line 41 resend the signal? W]

Lines 51-63 show balance_count (), which is similar to that of earlier examples.

Listing 5.19 shows the add_count () function. The fastpath spans lines 5-20, and
the slowpath lines 21-35. Line 5 sets the per-thread counting variable to 1 so that
any subsequent signal handlers interrupting this thread will set the theft state to ACK
rather than READY, allowing this fastpath to complete properly. Line 6 prevents the
compiler from reordering any of the fastpath body to precede the setting of counting.
Lines 7 and 8 check to see if the per-thread data can accommodate the add_count ()

100 CHAPTER 5. COUNTING

Listing 5.18: Signal-Theft Limit Counter Value-Migration Functions

I static void globalize_count(void)

2 {

3 globalcount += counter;

4 counter = 0;

5 globalreserve -= countermax;
6 countermax = 0;

.

8

9

}
static void flush_local_count_sig(int unused)
10 {
11 if (READ_ONCE(theft) != THEFT_REQ)
12 return;
13 smp_mb () ;
14 WRITE_ONCE(theft, THEFT_ACK);
15 if (!counting) {
16 WRITE_ONCE(theft, THEFT_READY);
17 }
18 smp_mb () ;
19 }
20
21 static void flush_local_count(void)
2 {
23 int t;
24 thread_id_t tid;
25
26 for_each_tid(t, tid)
27 if (theftp[t] != NULL) {
28 if (*countermaxp[t] == 0) {
29 WRITE_ONCE (*theftp[t], THEFT_READY);
30 continue;
31 }
32 WRITE_ONCE(xtheftp[t], THEFT_REQ);
33 pthread_kill(tid, SIGUSR1);
34 b
35 for_each_tid(t, tid) {
36 if (theftp[t] == NULL)
37 continue;
38 while (READ_ONCE(*theftp[t]) != THEFT_READY) {
39 poll(NULL, 0, 1);
40 if (READ_ONCE(xtheftp[t]) == THEFT_REQ)
41 pthread_kill(tid, SIGUSR1);
) ¥
43 globalcount += *counterp[t];
44 *xcounterp[t] = 0;
45 globalreserve -= *countermaxp[t];
46 *countermaxp[t] = 0;
47 WRITE_ONCE(*theftp[t], THEFT_IDLE);
48 }
49 }
50
51 static void balance_count(void)
52 {
53 countermax = globalcountmax - globalcount -
54 globalreserve;
55 countermax /= num_online_threads();
56 if (countermax > MAX_COUNTERMAX)
57 countermax = MAX_COUNTERMAX;
58 globalreserve += countermax;
59 counter = countermax / 2;
60 if (counter > globalcount)
61 counter = globalcount;
62 globalcount -= counter;

63 ¥

5.4. EXACT LIMIT COUNTERS

101

Listing 5.19: Signal-Theft Limit Counter Add Function

1
2
3
4
5
6
7
8
9

10
11
12

i
{

nt add_count (unsigned long delta)

int fastpath = 0;

WRITE_ONCE(counting, 1);
barrier();
if (READ_ONCE(theft) <= THEFT_REQ &&
countermax - counter >= delta) {
WRITE_ONCE(counter, counter + delta);
fastpath = 1;
}
barrier();
WRITE_ONCE(counting, 0);
barrier();
if (READ_ONCE(theft) == THEFT_ACK) {
smp_mb() ;
WRITE_ONCE(theft, THEFT_READY);
¥
if (fastpath)
return 1;
spin_lock(&gblcnt_mutex);
globalize_count();
if (globalcountmax - globalcount -
globalreserve < delta) {
flush_local_count();
if (globalcountmax - globalcount -
globalreserve < delta) {
spin_unlock(&gblcnt_mutex) ;
return O;
}
}
globalcount += delta;
balance_count();
spin_unlock(&gblcnt_mutex) ;
return 1;

102 CHAPTER 5. COUNTING

Listing 5.20: Signal-Theft Limit Counter Subtract Function

1 int sub_count(unsigned long delta)

2 {

3 int fastpath = 0;

4

5 WRITE_ONCE(counting, 1);

6 barrier();

7 if (READ_ONCE(theft) <= THEFT_REQ &&
8 counter >= delta) {

9 WRITE_ONCE(counter, counter - delta);
10 fastpath = 1;

11 }

12 barrier();

13 WRITE_ONCE(counting, 0);

14 barrier();

15 if (READ_ONCE(theft) == THEFT_ACK) {
16 smp_mb () ;

17 WRITE_ONCE(theft, THEFT_READY);
18 }

19 if (fastpath)

20 return 1;

21 spin_lock(&gblcnt_mutex) ;

2 globalize_count();

23 if (globalcount < delta) {

24 flush_local_count();

25 if (globalcount < delta) {
26 spin_unlock(&gblcnt_mutex) ;
27 return O;

28 ¥

29 ¥

30 globalcount -= delta;

31 balance_count () ;

3 spin_unlock(&gblcnt_mutex);

33 return 1;

34)

Listing 5.21: Signal-Theft Limit Counter Read Function

| unsigned long read_count(void)

2 {

3 int t;

4 unsigned long sum;

5

6 spin_lock(&gblcnt_mutex) ;

7 sum = globalcount;

3 for_each_thread(t)

9 if (counterp[t] != NULL)
10 sum += READ_ONCE (*counterp[t]);
11 spin_unlock(&gblcnt_mutex) ;

12 return sum;

13}

and if there is no ongoing theft in progress, and if so line 9 does the fastpath addition
and line 10 notes that the fastpath was taken.

In either case, line 12 prevents the compiler from reordering the fastpath body to
follow line 13, which permits any subsequent signal handlers to undertake theft. Line 14
again disables compiler reordering, and then line 15 checks to see if the signal handler
deferred the theft state-change to READY, and, if so, line 16 executes a memory
barrier to ensure that any CPU that sees line 17 setting state to READY also sees the
effects of line 9. If the fastpath addition at line 9 was executed, then line 20 returns
success.

Otherwise, we fall through to the slowpath starting at line 21. The structure of the
slowpath is similar to those of earlier examples, so its analysis is left as an exercise
to the reader. Similarly, the structure of sub_count () on Listing 5.20 is the same as

5.4. EXACT LIMIT COUNTERS 103

Listing 5.22: Signal-Theft Limit Counter Initialization Functions

1 void count_init(void)

2 {

3 struct sigaction sa;

4

5 sa.sa_handler = flush_local_count_sig;
6 sigemptyset (&sa.sa_mask) ;

7 sa.sa_flags = 0;

3 if (sigaction(SIGUSR1, &sa, NULL) != 0) {
9 perror("sigaction");

10 exit (EXIT_FAILURE);

11 }

12}

13

14 void count_register_thread(void)

15 {

16 int idx = smp_thread_id();

17

18 spin_lock(&gblcnt_mutex);

19 counterp[idx] = &counter;

20 countermaxp[idx] = &countermax;
21 theftp[idx] = &theft;

2 spin_unlock(&gblcnt_mutex) ;

23 }

24

25 void count_unregister_thread(int nthreadsexpected)
2% {

27 int idx = smp_thread_id();

28

29 spin_lock(&gblcnt_mutex) ;

30 globalize_count();

31 counterp[idx] = NULL;

32 countermaxp[idx] = NULL;

33 theftp[idx] = NULL;

34 spin_unlock(&gblcnt_mutex) ;

35)

that of add_count (), so the analysis of sub_count () is also left as an exercise for the
reader, as is the analysis of read_count () in Listing 5.21.

Lines 1-12 of Listing 5.22 show count_init (), which set up flush_local_
count_sig() as the signal handler for SIGUSR1, enabling the pthread_kil1l() calls
in flush_local_count () to invoke flush_local_count_sig(). The code for
thread registry and unregistry is similar to that of earlier examples, so its analysis is left
as an exercise for the reader.

5.4.5 Signal-Theft Limit Counter Discussion

The signal-theft implementation runs more than twice as fast as the atomic implementa-
tion on my Intel Core Duo laptop. Is it always preferable?

The signal-theft implementation would be vastly preferable on Pentium-4 systems,
given their slow atomic instructions, but the old 80386-based Sequent Symmetry
systems would do much better with the shorter path length of the atomic implementation.
However, this increased update-side performance comes at the prices of higher read-side
overhead: Those POSIX signals are not free. If ultimate performance is of the essence,
you will need to measure them both on the system that your application is to be deployed
on.

Quick Quiz 5.54: Not only are POSIX signals slow, sending one to each thread simply does
not scale. What would you do if you had (say) 10,000 threads and needed the read side to be
fast? W

104 CHAPTER 5. COUNTING

This is but one reason why high-quality APIs are so important: they permit im-
plementations to be changed as required by ever-changing hardware performance
characteristics.

Quick Quiz 5.55: What if you want an exact limit counter to be exact only for its lower limit,
but to allow the upper limit to be inexact? H

5.4.6 Applying Exact Limit Counters

Although the exact limit counter implementations presented in this section can be very
useful, they are not much help if the counter’s value remains near zero at all times, as it
might when counting the number of outstanding accesses to an I/O device. The high
overhead of such near-zero counting is especially painful given that we normally don’t
care how many references there are. As noted in the removable I/O device access-count
problem posed by Quick Quiz 5.5, the number of accesses is irrelevant except in those
rare cases when someone is actually trying to remove the device.

One simple solution to this problem is to add a large “bias” (for example, one billion)
to the counter in order to ensure that the value is far enough from zero that the counter
can operate efficiently. When someone wants to remove the device, this bias is subtracted
from the counter value. Counting the last few accesses will be quite inefficient, but the
important point is that the many prior accesses will have been counted at full speed.

[Quick Quiz 5.56: What else had you better have done when using a biased counter? H J

Although a biased counter can be quite helpful and useful, it is only a partial solution
to the removable I/O device access-count problem called out on page 73. When
attempting to remove a device, we must not only know the precise number of current
I/0 accesses, we also need to prevent any future accesses from starting. One way to
accomplish this is to read-acquire a reader-writer lock when updating the counter, and to
write-acquire that same reader-writer lock when checking the counter. Code for doing
I/0 might be as follows:

read_lock(&mylock) ;

if (removing) {
read_unlock(&mylock) ;
cancel_io();

} else {
add_count (1) ;
read_unlock(&mylock) ;
do_io(Q);
sub_count (1) ;

S 0 % a9 kW —

Line 1 read-acquires the lock, and either line 3 or 7 releases it. Line 2 checks to see
if the device is being removed, and, if so, line 3 releases the lock and line 4 cancels
the I/0O, or takes whatever action is appropriate given that the device is to be removed.
Otherwise, line 6 increments the access count, line 7 releases the lock, line 8 performs
the I/0, and line 9 decrements the access count.

Quick Quiz 5.57: This is ridiculous! We are read-acquiring a reader-writer lock to update the
counter? What are you playing at???

The code to remove the device might be as follows:

5.5. PARALLEL COUNTING DISCUSSION 105

Table 5.1: Statistical/Limit Counter Performance on x86

) < Reads (ns)
Algorithm g€ Updates
(count_x*.c) Section [ﬁ (ns) 1CPU 8CPUs 64CPUs 420 CPUs

stat 522 6.3 294 303 315 612
stat_eventual 523 6.4 1 1 1 1
end 5.2.4 2.9 301 6,309 147,594 239,683
end_rcu 13.3.1 2.9 454 481 508 2,317
lim 532 N 3.2 435 6,678 156,175 239,422
lim_app 534 N 2.4 485 7,041 173,108 239,682
lim_atomic 541 Y 19.7 513 7,085 199,957 239,450
lim_sig 544 Y 4.7 519 6,805 120,000 238,811

write_lock(&mylock) ;

removing = 1;

sub_count (mybias) ;

write_unlock(&mylock) ;

while (read_count() !'= 0) {
poll(NULL, 0, 1);

}

remove_device();

® 9 o m AW —

Line 1 write-acquires the lock and line 4 releases it. Line 2 notes that the device is
being removed, and the loop spanning lines 5—7 waits for any I/O operations to complete.
Finally, line 8 does any additional processing needed to prepare for device removal.

[Quick Quiz 5.58: What other issues would need to be accounted for in a real system? Wl]

5.5 Parallel Counting Discussion

This idea that there is generality in the specific is of
far-reaching importance.

Douglas R. Hofstadter

This chapter has presented the reliability, performance, and scalability problems with
traditional counting primitives. The C-language ++ operator is not guaranteed to
function reliably in multithreaded code, and atomic operations to a single variable
neither perform nor scale well. This chapter therefore presented a number of counting
algorithms that perform and scale extremely well in certain special cases.

It is well worth reviewing the lessons from these counting algorithms. To that end,
Section 5.5.1 summarizes performance and scalability, Section 5.5.2 discusses the
need for specialization, and finally, Section 5.5.3 enumerates lessons learned and calls
attention to later chapters that will expand on these lessons.

5.5.1 Parallel Counting Performance

The top half of Table 5.1 shows the performance of the four parallel statistical counting
algorithms. All four algorithms provide near-perfect linear scalability for updates. The

106 CHAPTER 5. COUNTING

per-thread-variable implementation (count_end. c) is significantly faster on updates
than the array-based implementation (count_stat. c), but is slower at reads on large
numbers of core, and suffers severe lock contention when there are many parallel readers.
This contention can be addressed using the deferred-processing techniques introduced in
Chapter 9, as shown on the count_end_rcu. c row of Table 5.1. Deferred processing
also shines on the count_stat_eventual. c row, courtesy of eventual consistency.

Quick Quiz 5.59: On the count_stat.c row of Table 5.1, we see that the read-side scales
linearly with the number of threads. How is that possible given that the more threads there are,
the more per-thread counters must be summed up? W

Quick Quiz 5.60: Even on the fourth row of Table 5.1, the read-side performance of these
statistical counter implementations is pretty horrible. So why bother with them? H

The bottom half of Table 5.1 shows the performance of the parallel limit-counting
algorithms. Exact enforcement of the limits incurs a substantial performance penalty,
although on this x86 system that penalty can be reduced by substituting signals for
atomic operations. All of these implementations suffer from read-side lock contention
in the face of concurrent readers.

Quick Quiz 5.61: Given the performance data shown in the bottom half of Table 5.1, we
should always prefer signals over atomic operations, right? H

Quick Quiz 5.62: Can advanced techniques be applied to address the lock contention for
readers seen in the bottom half of Table 5.1? W

In short, this chapter has demonstrated a number of counting algorithms that perform
and scale extremely well in a number of special cases. But must our parallel counting
be confined to special cases? Wouldn’t it be better to have a general algorithm that
operated efficiently in all cases? The next section looks at these questions.

5.5.2 Parallel Counting Specializations

The fact that these algorithms only work well in their respective special cases might
be considered a major problem with parallel programming in general. After all, the
C-language ++ operator works just fine in single-threaded code, and not just for special
cases, but in general, right?

This line of reasoning does contain a grain of truth, but is in essence misguided.
The problem is not parallelism as such, but rather scalability. To understand this, first
consider the C-language ++ operator. The fact is that it does not work in general, only
for a restricted range of numbers. If you need to deal with 1,000-digit decimal numbers,
the C-language ++ operator will not work for you.

Quick Quiz 5.63: The ++ operator works just fine for 1,000-digit numbers! Haven’t you heard
of operator overloading??? W

This problem is not specific to arithmetic. Suppose you need to store and query data.
Should you use an ASCII file? XML? A relational database? A linked list? A dense
array? A B-tree? A radix tree? Or one of the plethora of other data structures and
environments that permit data to be stored and queried? It depends on what you need
to do, how fast you need it done, and how large your data set is—even on sequential
systems.

5.5. PARALLEL COUNTING DISCUSSION 107

Similarly, if you need to count, your solution will depend on how large of numbers
you need to work with, how many CPUs need to be manipulating a given number
concurrently, how the number is to be used, and what level of performance and scalability
you will need.

Nor is this problem specific to software. The design for a bridge meant to allow people
to walk across a small brook might be a simple as a single wooden plank. But you would
probably not use a plank to span the kilometers-wide mouth of the Columbia River, nor
would such a design be advisable for bridges carrying concrete trucks. In short, just
as bridge design must change with increasing span and load, so must software design
change as the number of CPUs increases. That said, it would be good to automate this
process, so that the software adapts to changes in hardware configuration and in workload.
There has in fact been some research into this sort of automation [AHS*03, SAH*03],
and the Linux kernel does some boot-time reconfiguration, including limited binary
rewriting. This sort of adaptation will become increasingly important as the number of
CPUs on mainstream systems continues to increase.

In short, as discussed in Chapter 3, the laws of physics constrain parallel software
just as surely as they constrain mechanical artifacts such as bridges. These constraints
force specialization, though in the case of software it might be possible to automate the
choice of specialization to fit the hardware and workload in question.

Of course, even generalized counting is quite specialized. We need to do a great
number of other things with computers. The next section relates what we have learned
from counters to topics taken up later in this book.

5.5.3 Parallel Counting Lessons

The opening paragraph of this chapter promised that our study of counting would
provide an excellent introduction to parallel programming. This section makes explicit
connections between the lessons from this chapter and the material presented in a
number of later chapters.

The examples in this chapter have shown that an important scalability and performance
tool is partitioning. The counters might be fully partitioned, as in the statistical counters
discussed in Section 5.2, or partially partitioned as in the limit counters discussed in
Sections 5.3 and 5.4. Partitioning will be considered in far greater depth in Chapter 6,
and partial parallelization in particular in Section 6.4, where it is called parallel fastpath.

Quick Quiz 5.64: But if we are going to have to partition everything, why bother with
shared-memory multithreading? Why not just partition the problem completely and run as
multiple processes, each in its own address space? H

The partially partitioned counting algorithms used locking to guard the global data,
and locking is the subject of Chapter 7. In contrast, the partitioned data tended to be fully
under the control of the corresponding thread, so that no synchronization whatsoever
was required. This data ownership will be introduced in Section 6.3.4 and discussed in
more detail in Chapter 8.

Because integer addition and subtraction are extremely cheap operations compared to
typical synchronization operations, achieving reasonable scalability requires synchro-
nization operations be used sparingly. One way of achieving this is to batch the addition
and subtraction operations, so that a great many of these cheap operations are handled
by a single synchronization operation. Batching optimizations of one sort or another
are used by each of the counting algorithms listed in Table 5.1.

108 CHAPTER 5. COUNTING

Finally, the eventually consistent statistical counter discussed in Section 5.2.3 showed
how deferring activity (in that case, updating the global counter) can provide substantial
performance and scalability benefits. This approach allows common case code to use
much cheaper synchronization operations than would otherwise be possible. Chapter 9
will examine a number of additional ways that deferral can improve performance,
scalability, and even real-time response.

Summarizing the summary:

1. Partitioning promotes performance and scalability.

2. Partial partitioning, that is, partitioning applied only to common code paths, works
almost as well.

3. Partial partitioning can be applied to code (as in Section 5.2’s statistical counters’
partitioned updates and non-partitioned reads), but also across time (as in Sec-
tion 5.3’s and Section 5.4’s limit counters running fast when far from the limit, but
slowly when close to the limit).

4. Partitioning across time often batches updates locally in order to reduce the number
of expensive global operations, thereby decreasing synchronization overhead, in
turn improving performance and scalability. All the algorithms shown in Table 5.1
make heavy use of batching.

5. Read-only code paths should remain read-only: Spurious synchronization writes
to shared memory kill performance and scalability, as seen in the count_end.c
row of Table 5.1.

6. Judicious use of delay promotes performance and scalability, as seen in Sec-
tion 5.2.3.

7. Parallel performance and scalability is usually a balancing act: Beyond a certain
point, optimizing some code paths will degrade others. The count_stat.c and
count_end_rcu.c rows of Table 5.1 illustrate this point.

8. Different levels of performance and scalability will affect algorithm and data-
structure design, as do a large number of other factors. Figure 5.1 illustrates this
point: Atomic increment might be completely acceptable for a two-CPU system,
but be completely inadequate for an eight-CPU system.

Summarizing still further, we have the “big three” methods of increasing performance
and scalability, namely (1) partitioning over CPUs or threads, (2) batching so that more
work can be done by each expensive synchronization operations, and (3) weakening
synchronization operations where feasible. As a rough rule of thumb, you should
apply these methods in this order, as was noted earlier in the discussion of Figure 2.6
on page 22. The partitioning optimization applies to the “Resource Partitioning and
Replication” bubble, the batching optimization to the “Work Partitioning” bubble,
and the weakening optimization to the ‘“Parallel Access Control” bubble, as shown
in Figure 5.8. Of course, if you are using special-purpose hardware such as digital
signal processors (DSPs), field-programmable gate arrays (FPGAs), or general-purpose
graphical processing units (GPGPUs), you may need to pay close attention to the
“Interacting With Hardware” bubble throughout the design process. For example, the
structure of a GPGPU’s hardware threads and memory connectivity might richly reward
very careful partitioning and batching design decisions.

5.5. PARALLEL COUNTING DISCUSSION 109

Figure 5.8: Optimization and the Four Parallel-Programming Tasks

In short, as noted at the beginning of this chapter, the simplicity of counting have
allowed us to explore many fundamental concurrency issues without the distraction of
complex synchronization primitives or elaborate data structures. Such synchronization
primitives and data structures are covered in later chapters.

Edition.2-rc3

110 CHAPTER 5. COUNTING

Divide and rule.

Philip Il of Macedon

Chapter 6

Partitioning and
Synchronization Design

This chapter describes how to design software to take advantage of modern commodity
multicore systems by using idioms, or “design patterns” [Ale79, GHIV95, SSRB00], to
balance performance, scalability, and response time. Correctly partitioned problems lead
to simple, scalable, and high-performance solutions, while poorly partitioned problems
result in slow and complex solutions. This chapter will help you design partitioning
into your code, with some discussion of batching and weakening as well. The word
“design” is very important: You should partition first, batch second, weaken third, and
code fourth. Changing this order often leads to poor performance and scalability along
with great frustration.'

To this end, Section 6.1 presents partitioning exercises, Section 6.2 reviews parti-
tionability design criteria, Section 6.3 discusses synchronization granularity selection,
Section 6.4 overviews important parallel-fastpath design patterns that provide speed
and scalability on common-case fastpaths while using simpler less-scalable “slow
path” fallbacks for unusual situations, and finally Section 6.5 takes a brief look beyond
partitioning.

6.1 Partitioning Exercises

Whenever a theory appears to you as the only
possible one, take this as a sign that you have neither
understood the theory nor the problem which it was
intended to solve.

Karl Popper

Although partitioning is more widely understood than it was in the early 2000s, its value
is still underappreciated. Section 6.1.1 therefore takes more highly parallel look at the
classic Dining Philosophers problem and Section 6.1.2 revisits the double-ended queue.

! That other great dodge around the Laws of Physics, read-only replication, is covered in
Chapter 9.

111

112 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Figure 6.2: Partial Starvation Is Also Bad

6.1.1 Dining Philosophers Problem

Figure 6.1 shows a diagram of the classic Dining Philosophers problem [Dij71]. This
problem features five philosophers who do nothing but think and eat a “very difficult
kind of spaghetti” which requires two forks to eat.> A given philosopher is permitted to
use only the forks to his or her immediate right and left, but will not put a given fork
down until sated.

The object is to construct an algorithm that, quite literally, prevents starvation. One
starvation scenario would be if all of the philosophers picked up their leftmost forks
simultaneously. Because none of them would put down their fork until after they ate, and
because none of them may pick up their second fork until at least one has finished eating,
they all starve. Please note that it is not sufficient to allow at least one philosopher to
eat. As Figure 6.2 shows, starvation of even a few of the philosophers is to be avoided.

Dijkstra’s solution used a global semaphore, which works fine assuming negligible
communications delays, an assumption that became invalid in the late 1980s or early

2 But feel free to instead think in terms of chopsticks.

6.1. PARTITIONING EXERCISES 113

Figure 6.3: Dining Philosophers Problem, Textbook Solution

1990s.? More recent solutions number the forks as shown in Figure 6.3. Each philosopher
picks up the lowest-numbered fork next to his or her plate, then picks up the other fork.
The philosopher sitting in the uppermost position in the diagram thus picks up the
leftmost fork first, then the rightmost fork, while the rest of the philosophers instead
pick up their rightmost fork first. Because two of the philosophers will attempt to pick
up fork 1 first, and because only one of those two philosophers will succeed, there will
be five forks available to four philosophers. At least one of these four will have two
forks, and will thus be able to eat.

This general technique of numbering resources and acquiring them in numerical
order is heavily used as a deadlock-prevention technique. However, it is easy to imagine
a sequence of events that will result in only one philosopher eating at a time even though
all are hungry:

1. P2 picks up fork 1, preventing P1 from taking a fork.
2. P3 picks up fork 2.
3. P4 picks up fork 3.
PS5 picks up fork 4.

PS5 picks up fork 5 and eats.

AN

PS5 puts down forks 4 and 5.

7. P4 picks up fork 4 and eats.

In short, this algorithm can result in only one philosopher eating at a given time, even
when all five philosophers are hungry, despite the fact that there are more than enough
forks for two philosophers to eat concurrently. It should be possible to do better than
this!

3 It is all too easy to denigrate Dijkstra from the viewpoint of the year 2012, more than
40 years after the fact. If you still feel the need to denigrate Dijkstra, my advice is to publish
something, wait 40 years, and then see how well your ideas stood the test of time.

114 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Figure 6.4: Dining Philosophers Problem, Partitioned

One approach is shown in Figure 6.4, which includes four philosophers rather than five
to better illustrate the partition technique. Here the upper and rightmost philosophers
share a pair of forks, while the lower and leftmost philosophers share another pair of
forks. If all philosophers are simultaneously hungry, at least two will always be able to
eat concurrently. In addition, as shown in the figure, the forks can now be bundled so
that the pair are picked up and put down simultaneously, simplifying the acquisition and
release algorithms.

[Quick Quiz 6.1: Ts there a better solution to the Dining Philosophers Problem? H J

This is an example of “horizontal parallelism” [Inm85] or “data parallelism”, so
named because there is no dependency among the pairs of philosophers. In a horizontally
parallel data-processing system, a given item of data would be processed by only one of
a replicated set of software components.

Quick Quiz 6.2: And in just what sense can this “horizontal parallelism” be said to be
“horizontal”’? W

6.1.2 Double-Ended Queue

A double-ended queue is a data structure containing a list of elements that may be
inserted or removed from either end [Knu73]. It has been claimed that a lock-based
implementation permitting concurrent operations on both ends of the double-ended
queue is difficult [Gro07]. This section shows how a partitioning design strategy can
result in a reasonably simple implementation, looking at three general approaches in the
following sections.

6.1.2.1 Left- and Right-Hand Locks

One seemingly straightforward approach would be to use a doubly linked list with a
left-hand lock for left-hand-end enqueue and dequeue operations along with a right-hand
lock for right-hand-end operations, as shown in Figure 6.5. However, the problem

6.1. PARTITIONING EXERCISES 115

Lock L Lock R

Header L Header R

Lock L Lock R

HeaderL [’l 0 |(=1 Header R

Lock L Lock R

HeaderL [< =1 0 [= = 1 [= =] HeaderR

Lock L Lock R

Header L n - u Header R

Lock L Lock R

Header L n u | Header R

Figure 6.5: Double-Ended Queue With Left- and Right-Hand Locks

Lock L Lock R

Figure 6.6: Compound Double-Ended Queue

with this approach is that the two locks’ domains must overlap when there are fewer
than four elements on the list. This overlap is due to the fact that removing any given
element affects not only that element, but also its left- and right-hand neighbors. These
domains are indicated by color in the figure, with blue with downward stripes indicating
the domain of the left-hand lock, red with upward stripes indicating the domain of the
right-hand lock, and purple (with no stripes) indicating overlapping domains. Although
it is possible to create an algorithm that works this way, the fact that it has no fewer than
five special cases should raise a big red flag, especially given that concurrent activity at
the other end of the list can shift the queue from one special case to another at any time.
It is far better to consider other designs.

6.1.2.2 Compound Double-Ended Queue

One way of forcing non-overlapping lock domains is shown in Figure 6.6. Two separate
double-ended queues are run in tandem, each protected by its own lock. This means
that elements must occasionally be shuttled from one of the double-ended queues to
the other, in which case both locks must be held. A simple lock hierarchy may be used
to avoid deadlock, for example, always acquiring the left-hand lock before acquiring
the right-hand lock. This will be much simpler than applying two locks to the same
double-ended queue, as we can unconditionally left-enqueue elements to the left-hand
queue and right-enqueue elements to the right-hand queue. The main complication
arises when dequeuing from an empty queue, in which case it is necessary to:

116 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

DEQO DEQ2 | DEQ3

Lock 0 Lock2 | Lock 3

Index L

Index R

Lock L Lock R

Figure 6.7: Hashed Double-Ended Queue

1. If holding the right-hand lock, release it and acquire the left-hand lock.
2. Acquire the right-hand lock.

3. Rebalance the elements across the two queues.

4. Remove the required element if there is one.

5. Release both locks.

Quick Quiz 6.3: In this compound double-ended queue implementation, what should be done
if the queue has become non-empty while releasing and reacquiring the lock? W

The resulting code (Locktdeq. c) is quite straightforward. The rebalancing operation
might well shuttle a given element back and forth between the two queues, wasting time
and possibly requiring workload-dependent heuristics to obtain optimal performance.
Although this might well be the best approach in some cases, it is interesting to try for
an algorithm with greater determinism.

6.1.2.3 Hashed Double-Ended Queue

One of the simplest and most effective ways to deterministically partition a data structure
is to hash it. It is possible to trivially hash a double-ended queue by assigning each
element a sequence number based on its position in the list, so that the first element
left-enqueued into an empty queue is numbered zero and the first element right-enqueued
into an empty queue is numbered one. A series of elements left-enqueued into an
otherwise-idle queue would be assigned decreasing numbers (-1, -2, -3, ...), while
a series of elements right-enqueued into an otherwise-idle queue would be assigned
increasing numbers (2, 3, 4, ...). A key point is that it is not necessary to actually
represent a given element’s number, as this number will be implied by its position in the
queue.

Given this approach, we assign one lock to guard the left-hand index, one to guard
the right-hand index, and one lock for each hash chain. Figure 6.7 shows the resulting
data structure given four hash chains. Note that the lock domains do not overlap, and
that deadlock is avoided by acquiring the index locks before the chain locks, and by
never acquiring more than one lock of each type (index or chain) at a time.

Each hash chain is itself a double-ended queue, and in this example, each holds
every fourth element. The uppermost portion of Figure 6.8 shows the state after a
single element (“R;”) has been right-enqueued, with the right-hand index having been
incremented to reference hash chain 2. The middle portion of this same figure shows

6.1. PARTITIONING EXERCISES 117

Ry

DEQO | DEQ1 | DEQ2 | DEQ3

Index L Index R

R4 R Ro Rs

DEQO | DEQ1 | DEQ2 | DEQ3

Index L Index R
R4 Rs Ro Rs3
LO R‘] L 2 L 1

DEQO | DEQ1 | DEQ2 | DEQ3

IndexL | | Index R

Figure 6.8: Hashed Double-Ended Queue After Insertions

the state after three more elements have been right-enqueued. As you can see, the
indexes are back to their initial states (see Figure 6.7), however, each hash chain is
now non-empty. The lower portion of this figure shows the state after three additional
elements have been left-enqueued and an additional element has been right-enqueued.

From the last state shown in Figure 6.8, a left-dequeue operation would return element
“L_,” and leave the left-hand index referencing hash chain 2, which would then contain
only a single element (“R,”). In this state, a left-enqueue running concurrently with a
right-enqueue would result in lock contention, but the probability of such contention
can be reduced to arbitrarily low levels by using a larger hash table.

Figure 6.9 shows how 16 elements would be organized in a four-hash-bucket parallel
double-ended queue. Each underlying single-lock double-ended queue holds a one-
quarter slice of the full parallel double-ended queue.

118 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

R4 Rs Re R~

Lo R1 R2 Rs3

La| Lag| Lol| Ly

L_g L7 Ls Ls

Figure 6.9: Hashed Double-Ended Queue With 16 Elements

Listing 6.1: Lock-Based Parallel Double-Ended Queue Data Structure

I struct pdeq {

2 spinlock_t llock;

int lidx;

spinlock_t rlock;

int ridx;

struct deq bkt [PDEQ_N_BKTS];

R NV)

Listing 6.1 shows the corresponding C-language data structure, assuming an existing
struct deq that provides a trivially locked double-ended-queue implementation. This
data structure contains the left-hand lock on line 2, the left-hand index on line 3,
the right-hand lock on line 4 (which is cache-aligned in the actual implementation),
the right-hand index on line 5, and, finally, the hashed array of simple lock-based
double-ended queues on line 6. A high-performance implementation would of course
use padding or special alignment directives to avoid false sharing.

Listing 6.2 (Lockhdeq. c) shows the implementation of the enqueue and dequeue
functions.* Discussion will focus on the left-hand operations, as the right-hand
operations are trivially derived from them.

Lines 1-13 show pdeq_pop_1(), which left-dequeues and returns an element if
possible, returning NULL otherwise. Line 6 acquires the left-hand spinlock, and line 7
computes the index to be dequeued from. Line 8 dequeues the element, and, if line 9
finds the result to be non-NULL, line 10 records the new left-hand index. Either way,
line 11 releases the lock, and, finally, line 12 returns the element if there was one, or
NULL otherwise.

Lines 29-38 show pdeq_push_1(), which left-enqueues the specified element.
Line 33 acquires the left-hand lock, and line 34 picks up the left-hand index. Line 35
left-enqueues the specified element onto the double-ended queue indexed by the left-hand
index. Line 36 then updates the left-hand index and line 37 releases the lock.

As noted earlier, the right-hand operations are completely analogous to their left-
handed counterparts, so their analysis is left as an exercise for the reader.

[Quick Quiz 6.4: Is the hashed double-ended queue a good solution? Why or why not? H J

6.1.2.4 Compound Double-Ended Queue Revisited

This section revisits the compound double-ended queue, using a trivial rebalancing
scheme that moves all the elements from the non-empty queue to the now-empty queue.

4 One could easily create a polymorphic implementation in any number of languages,
but doing so is left as an exercise for the reader.

6.1. PARTITIONING EXERCISES 119

Listing 6.2: Lock-Based Parallel Double-Ended Queue Implementation

| struct cds_list_head *pdeq_pop_l(struct pdeq *d)
2 {

3 struct cds_list_head *e;

4 int i;

5

6 spin_lock(&d->1lock);

7 i = moveright(d->1idx);

8 e = deq_pop_1(&d->bkt[i]);

9 if (e != NULL)

10 d->1lidx = i;

11 spin_unlock(&d->1lock) ;

12 return e;

13}

14

15 struct cds_list_head *pdeq_pop_r(struct pdeq *d)
16 {

17 struct cds_list_head *e;

18 int i

19

20 spin_lock(&d->rlock);

21 i = moveleft(d->ridx);

2 e = deq_pop_r (&d->bkt[i]);

23 if (e != NULL)

24 d->ridx = i;

25 spin_unlock(&d->rlock) ;

26 return e;

27 }

28

29 void pdeq_push_l(struct cds_list_head *e, struct pdeq *d)
30 {

31 int i;

32

33 spin_lock(&d->1lock);

34 i = d->1idx;

35 deq_push_1(e, &d->bkt[il);

36 d->1idx = moveleft(d->1idx);
37 spin_unlock(&d->1lock) ;

3}

39

40 void pdeq_push_r(struct cds_list_head *e, struct pdeq *d)
4 {

42 int i;

43

44 spin_lock(&d->rlock);

45 i = d->ridx;

46 deq_push_r(e, &d->bkt[il);

47 d->ridx = moveright(d->ridx);
48 spin_unlock(&d->rlock) ;

49 }

120 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Listing 6.3: Compound Parallel Double-Ended Queue Implementation

I struct cds_list_head *pdeq_pop_l(struct pdeq *d)

2 {

3 struct cds_list_head *e;

4

5 spin_lock(&d->1lock) ;

6 e = deq_pop_1(&d->1deq) ;

7 if (e == NULL) {

8 spin_lock(&d->rlock);

9 e = deq_pop_l(&d->rdeq) ;

10 cds_list_splice(&d->rdeq.chain, &d->ldeq.chain);
11 CDS_INIT_LIST_HEAD(&d->rdeq.chain);
12 spin_unlock(&d->rlock) ;

13 }

14 spin_unlock(&d->1lock) ;

15 return e;

16 }

17

18 struct cds_list_head *pdeq_pop_r(struct pdeq *d)

19 {

20 struct cds_list_head *e;

21

2 spin_lock(&d->rlock);

23 e = deq_pop_r(&d->rdeq) ;

24 if (e == NULL) {

25 spin_unlock(&d->rlock) ;

26 spin_lock(&d->1lock) ;

27 spin_lock(&d->rlock);

28 e = deq_pop_r(&d->rdeq) ;

29 if (e == NULL) {

30 e = deq_pop_r(&d->1deq) ;

31 cds_list_splice (&d—>ldeq.chain, &d->rdeq. chain) ;
32 CDS_INIT_LIST_HEAD(&d->1ldeq.chain);
33 }

34 spin_unlock(&d->1lock) ;

35 }

36 spin_unlock(&d->rlock) ;

37 return e;

38 }

39

40 void pdeq_push_l(struct cds_list_head *e, struct pdeq *d)
a {

4 spin_lock(&d->1lock);

43 deq_push_l(e, &d->1ldeq);

44 spin_unlock(&d->1lock) ;

4}

46

47 void pdeq_push_r(struct cds_list_head *e, struct pdeq *d)
48 {

49 spin_lock(&d->rlock);

50 deq_push_r(e, &d->rdeq);

51 spin_unlock(&d->rlock) ;

52 }

Quick Quiz 6.5: Move all the elements to the queue that became empty? In what possible
universe is this brain-dead solution in any way optimal??? Wl

In contrast to the hashed implementation presented in the previous section, the
compound implementation will build on a sequential implementation of a double-ended
queue that uses neither locks nor atomic operations.

Listing 6.3 shows the implementation. Unlike the hashed implementation, this
compound implementation is asymmetric, so that we must consider the pdeq_pop_1()
and pdeq_pop_r () implementations separately.

Quick Quiz 6.6: Why can’t the compound parallel double-ended queue implementation be
symmetric? H

6.1. PARTITIONING EXERCISES 121

The pdeq_pop_1() implementation is shown on lines 1-16 of the figure. Line 5
acquires the left-hand lock, which line 14 releases. Line 6 attempts to left-dequeue an
element from the left-hand underlying double-ended queue, and, if successful, skips
lines 8—13 to simply return this element. Otherwise, line 8 acquires the right-hand
lock, line 9 left-dequeues an element from the right-hand queue, and line 10 moves any
remaining elements on the right-hand queue to the left-hand queue, line 11 initializes
the right-hand queue, and line 12 releases the right-hand lock. The element, if any, that
was dequeued on line 9 will be returned.

The pdeq_pop_r() implementation is shown on lines 18-38 of the figure. As
before, line 22 acquires the right-hand lock (and line 36 releases it), and line 23
attempts to right-dequeue an element from the right-hand queue, and, if successful,
skips lines 25-35 to simply return this element. However, if line 24 determines that there
was no element to dequeue, line 25 releases the right-hand lock and lines 26-27 acquire
both locks in the proper order. Line 28 then attempts to right-dequeue an element from
the right-hand list again, and if line 29 determines that this second attempt has failed,
line 30 right-dequeues an element from the left-hand queue (if there is one available),
line 31 moves any remaining elements from the left-hand queue to the right-hand queue,
and line 32 initializes the left-hand queue. Either way, line 34 releases the left-hand
lock.

Quick Quiz 6.7: Why is it necessary to retry the right-dequeue operation on line 28 of
Listing 6.37 W

Quick Quiz 6.8: Surely the left-hand lock must sometimes be available!!! So why is it
necessary that line 25 of Listing 6.3 unconditionally release the right-hand lock? Wl

The pdeq_push_1() implementation is shown on lines 40—45 of Listing 6.3. Line 42
acquires the left-hand spinlock, line 43 left-enqueues the element onto the left-hand
queue, and finally line 44 releases the lock. The pdeq_push_r () implementation
(shown on lines 47-52) is quite similar.

Quick Quiz 6.9: But in the case where data is flowing in only one direction, the algorithm
shown in Listing 6.3 will have both ends attempting to acquire the same lock whenever the
consuming end empties its underlying double-ended queue. Doesn’t that mean that sometimes
this algorithm fails to provide concurrent access to both ends of the queue even when the queue
contains an arbitrarily large number of elements? H

6.1.2.5 Double-Ended Queue Discussion

The compound implementation is somewhat more complex than the hashed variant
presented in Section 6.1.2.3, but is still reasonably simple. Of course, a more intelligent
rebalancing scheme could be arbitrarily complex, but the simple scheme shown here
has been shown to perform well compared to software alternatives [DCW*11] and even
compared to algorithms using hardware assist [DLM™* 10]. Nevertheless, the best we
can hope for from such a scheme is 2x scalability, as at most two threads can be holding
the dequeue’s locks concurrently. This limitation also applies to algorithms based on
non-blocking synchronization, such as the compare-and-swap-based dequeue algorithm
of Michael [Mic03].>

5 This paper is interesting in that it showed that special double-compare-and-swap
(DCAS) instructions are not needed for lock-free implementations of double-ended queues.
Instead, the common compare-and-swap (e.g., x86 cmpxchg) suffices.

122 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Quick Quiz 6.10: Why are there not one but two solutions to the double-ended queue problem?

In fact, as noted by Dice et al. [DLM*10], an unsynchronized single-threaded
double-ended queue significantly outperforms any of the parallel implementations they
studied. Therefore, the key point is that there can be significant overhead enqueuing to
or dequeuing from a shared queue, regardless of implementation. This should come
as no surprise given the material in Chapter 3, given the strict first-in-first-out (FIFO)
nature of these queues.

Furthermore, these strict FIFO queues are strictly FIFO only with respect to lin-
earization points [HW90]° that are not visible to the caller, in fact, in these examples,
the linearization points are buried in the lock-based critical sections. These queues
are not strictly FIFO with respect to (say) the times at which the individual operations
started [HKLP12]. This indicates that the strict FIFO property is not all that valuable in
concurrent programs, and in fact, Kirsch et al. present less-strict queues that provide
improved performance and scalability [KLP12].” All that said, if you are pushing all
the data used by your concurrent program through a single queue, you really need to
rethink your overall design.

6.1.3 Partitioning Example Discussion

The optimal solution to the dining philosophers problem given in the answer to the
Quick Quiz in Section 6.1.1 is an excellent example of “horizontal parallelism” or “data
parallelism”. The synchronization overhead in this case is nearly (or even exactly)
zero. In contrast, the double-ended queue implementations are examples of “vertical
parallelism” or “pipelining”, given that data moves from one thread to another. The
tighter coordination required for pipelining in turn requires larger units of work to obtain
a given level of efficiency.

Quick Quiz 6.11: The tandem double-ended queue runs about twice as fast as the hashed
double-ended queue, even when I increase the size of the hash table to an insanely large number.
Why is that? W

Quick Quiz 6.12: Is there a significantly better way of handling concurrency for double-ended
queues? H

These two examples show just how powerful partitioning can be in devising parallel
algorithms. Section 6.3.5 looks briefly at a third example, matrix multiply. However, all
three of these examples beg for more and better design criteria for parallel programs, a
topic taken up in the next section.

6 In short, a linearization point is a single point within a given function where that
function can be said to have taken effect. In this lock-based implementation, the linearization
points can be said to be anywhere within the critical section that does the work.

7 Nir Shavit produced relaxed stacks for roughly the same reasons [Shal 1]. This situation
leads some to believe that the linearization points are useful to theorists rather than developers,
and leads others to wonder to what extent the designers of such data structures and algorithms
were considering the needs of their users.

6.2. DESIGN CRITERIA 123

6.2 Design Criteria

One pound of learning requires ten pounds of
commonsense to apply it.

Persian proverb

One way to obtain the best performance and scalability is to simply hack away until
you converge on the best possible parallel program. Unfortunately, if your program is
other than microscopically tiny, the space of possible parallel programs is so huge that
convergence is not guaranteed in the lifetime of the universe. Besides, what exactly is
the “best possible parallel program™? After all, Section 2.2 called out no fewer than
three parallel-programming goals of performance, productivity, and generality, and
the best possible performance will likely come at a cost in terms of productivity and
generality. We clearly need to be able to make higher-level choices at design time in
order to arrive at an acceptably good parallel program before that program becomes
obsolete.

However, more detailed design criteria are required to actually produce a real-world
design, a task taken up in this section. This being the real world, these criteria often
conflict to a greater or lesser degree, requiring that the designer carefully balance the
resulting tradeoffs.

As such, these criteria may be thought of as the “forces” acting on the design, with
particularly good tradeoffs between these forces being called “design patterns” [Ale79,
GHIJV95].

The design criteria for attaining the three parallel-programming goals are speedup,
contention, overhead, read-to-write ratio, and complexity:

Speedup: As noted in Section 2.2, increased performance is the major reason to go to
all of the time and trouble required to parallelize it. Speedup is defined to be the
ratio of the time required to run a sequential version of the program to the time
required to run a parallel version.

Contention: If more CPUs are applied to a parallel program than can be kept busy by
that program, the excess CPUs are prevented from doing useful work by contention.
This may be lock contention, memory contention, or a host of other performance
killers.

Work-to-Synchronization Ratio: A uniprocessor, single-threaded, non-preemptible,
and non-interruptible® version of a given parallel program would not need any
synchronization primitives. Therefore, any time consumed by these primitives (in-
cluding communication cache misses as well as message latency, locking primitives,
atomic instructions, and memory barriers) is overhead that does not contribute
directly to the useful work that the program is intended to accomplish. Note that
the important measure is the relationship between the synchronization overhead
and the overhead of the code in the critical section, with larger critical sections
able to tolerate greater synchronization overhead. The work-to-synchronization
ratio is related to the notion of synchronization efficiency.

Read-to-Write Ratio: A data structure that is rarely updated may often be replicated
rather than partitioned, and furthermore may be protected with asymmetric

8 Either by masking interrupts or by being oblivious to them.

124 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

synchronization primitives that reduce readers’ synchronization overhead at the
expense of that of writers, thereby reducing overall synchronization overhead.
Corresponding optimizations are possible for frequently updated data structures,
as discussed in Chapter 5.

Complexity: A parallel program is more complex than an equivalent sequential
program because the parallel program has a much larger state space than does the
sequential program, although these larger state spaces can in some cases be easily
understood given sufficient regularity and structure. A parallel programmer must
consider synchronization primitives, messaging, locking design, critical-section
identification, and deadlock in the context of this larger state space.

This greater complexity often translates to higher development and maintenance
costs. Therefore, budgetary constraints can limit the number and types of modi-
fications made to an existing program, since a given degree of speedup is worth
only so much time and trouble. Worse yet, added complexity can actually reduce
performance and scalability.

Therefore, beyond a certain point, there may be potential sequential optimizations
that are cheaper and more effective than parallelization. As noted in Section 2.2.1,
parallelization is but one performance optimization of many, and is furthermore an
optimization that applies most readily to CPU-based bottlenecks.

These criteria will act together to enforce a maximum speedup. The first three criteria are
deeply interrelated, so the remainder of this section analyzes these interrelationships.”

Note that these criteria may also appear as part of the requirements specification. For
example, speedup may act as a relative desideratum (“the faster, the better””) or as an
absolute requirement of the workload (“the system must support at least 1,000,000 web
hits per second”). Classic design pattern languages describe relative desiderata as forces
and absolute requirements as context.

An understanding of the relationships between these design criteria can be very
helpful when identifying appropriate design tradeoffs for a parallel program.

1. The less time a program spends in critical sections, the greater the potential speedup.
This is a consequence of Amdahl’s Law [Amd67] and of the fact that only one
CPU may execute within a given critical section at a given time.

More specifically, the fraction of time that the program spends in a given exclusive
critical section must be much less than the reciprocal of the number of CPUs for the
actual speedup to approach the number of CPUs. For example, a program running
on 10 CPUs must spend much less than one tenth of its time in the most-restrictive
critical section if it is to scale at all well.

2. Contention effects will consume the excess CPU and/or wallclock time should the
actual speedup be less than the number of available CPUs. The larger the gap
between the number of CPUs and the actual speedup, the less efficiently the CPUs
will be used. Similarly, the greater the desired efficiency, the smaller the achievable
speedup.

3. If the available synchronization primitives have high overhead compared to the
critical sections that they guard, the best way to improve speedup is to reduce

9 A real-world parallel system will be subject to many additional design criteria, such as
data-structure layout, memory size, memory-hierarchy latencies, bandwidth limitations, and
1/0 issues.

6.3. SYNCHRONIZATION GRANULARITY 125

PSR
Sequential

Program <
- J

Partition Batch
T
> Code —

Locking |
-

Partition Batch
T
> Data —
| Locking |

N/
Own Disown
SR
> Data —

Ownership
-

Figure 6.10: Design Patterns and Lock Granularity

the number of times that the primitives are invoked (perhaps by batching critical
sections, using data ownership, using asymmetric primitives (see Section 9), or by
moving toward a more coarse-grained design such as code locking).

4. If the critical sections have high overhead compared to the primitives guarding
them, the best way to improve speedup is to increase parallelism by moving to
reader/writer locking, data locking, asymmetric, or data ownership.

5. If the critical sections have high overhead compared to the primitives guarding them
and the data structure being guarded is read much more often than modified, the
best way to increase parallelism is to move to reader/writer locking or asymmetric
primitives.

6. Many changes that improve SMP performance, for example, reducing lock con-
tention, also improve real-time latencies [McKO05c].

Quick Quiz 6.13: Don’t all these problems with critical sections mean that we should just
always use non-blocking synchronization [Her90b], which don’t have critical sections? H

6.3 Synchronization Granularity

Doing little things well is a step toward doing big
things better.

Harry F. Banks

Figure 6.10 gives a pictorial view of different levels of synchronization granularity, each
of which is described in one of the following sections. These sections focus primarily
on locking, but similar granularity issues arise with all forms of synchronization.

6.3.1 Sequential Program

If the program runs fast enough on a single processor, and has no interactions with
other processes, threads, or interrupt handlers, you should remove the synchronization

126 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

10000 T T T T 1T T 1T 3

2 s
o 5 i
S 1000 | ¢
S C]
8 - .
) 100 -
> - + 1
Y -
10 | Fep =

é i 4]
& | H#+ + i
) 1EF + —
& [+]

0.1 I A T T R R A
Te) o To] o Te) o Te) o Te) o
N~ 0] 0] D (o] o o ~— — Al
» » » » » o o o o o
~— ~— — ~— ~— Al (qV] A (q\] (q\]
Year

Figure 6.11: MIPS/Clock-Frequency Trend for Intel CPUs

primitives and spare yourself their overhead and complexity. Some years back, there
were those who would argue that Moore’s Law would eventually force all programs
into this category. However, as can be seen in Figure 6.11, the exponential increase in
single-threaded performance halted in about 2003. Therefore, increasing performance
will increasingly require parallelism.'” The debate as to whether this new trend will
result in single chips with thousands of CPUs will not be settled soon, but given that
Paul is typing this sentence on a dual-core laptop, the age of SMP does seem to be upon
us. It is also important to note that Ethernet bandwidth is continuing to grow, as shown
in Figure 6.12. This growth will motivate multithreaded servers in order to handle the
communications load.

Please note that this does not mean that you should code each and every program in a
multi-threaded manner. Again, if a program runs quickly enough on a single processor,
spare yourself the overhead and complexity of SMP synchronization primitives. The
simplicity of the hash-table lookup code in Listing 6.4 underscores this point.!' A key
point is that speedups due to parallelism are normally limited to the number of CPUs.
In contrast, speedups due to sequential optimizations, for example, careful choice of
data structure, can be arbitrarily large.

On the other hand, if you are not in this happy situation, read on!

6.3.2 Code Locking

Code locking is quite simple due to the fact that is uses only global locks.'? Tt is
especially easy to retrofit an existing program to use code locking in order to run it on a

10 This plot shows clock frequencies for newer CPUs theoretically capable of retiring
one or more instructions per clock, and MIPS for older CPUs requiring multiple clocks to
execute even the simplest instruction. The reason for taking this approach is that the newer
CPUs’ ability to retire multiple instructions per clock is typically limited by memory-system
performance.

! The examples in this section are taken from Hart et al. [HMBO6], adapted for clarity by
gathering related code from multiple files.

12 If your program instead has locks in data structures, or, in the case of Java, uses classes
with synchronized instances, you are instead using “data locking”, described in Section 6.3.3.

6.3. SYNCHRONIZATION GRANULARITY

1e+06 F1—T—T T T T T T T3
o 100000 F Ethernet E
(&) N .
S 10000 —=
£ i i
£ 1000 .
K I]
o 100 x86 CPUs =
= [i
© 10 F -
(0] - .
o | i
1 — >< -
[X]

0.1 I T T N N O N
o n o N oM o mu o .nu o
N N 0O O OO O © O ~ ~
oo O O O OO O ©O O O O o
- - - - - O N N N N

Year

Figure 6.12: Ethernet Bandwidth vs. Intel x86 CPU Performance

127

Listing 6.4: Sequential-Program Hash Table Search

1 struct hash_table

2 {

3 long nbuckets;

4 struct node **buckets;
5}

7 typedef struct node {

8 unsigned long key;
9 struct node *next;
10 } node_t;

12 int hash_search(struct hash_table *h, long key)

13 {

14 struct node *cur;

15

16 cur = h->bucketskey % h->nbuckets;
17 while (cur !'= NULL) {

18 if (cur->key >= key) {

19 return (cur->key == key);
20 }

21 cur = cur->next;

22 }

23 return O;

128 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

multiprocessor. If the program has only a single shared resource, code locking will even
give optimal performance. However, many of the larger and more complex programs
require much of the execution to occur in critical sections, which in turn causes code
locking to sharply limits their scalability.

Therefore, you should use code locking on programs that spend only a small fraction
of their execution time in critical sections or from which only modest scaling is required.
In these cases, code locking will provide a relatively simple program that is very similar
to its sequential counterpart, as can be seen in Listing 6.5. However, note that the
simple return of the comparison in hash_search() in Listing 6.4 has now become
three statements due to the need to release the lock before returning.

Listing 6.5: Code-Locking Hash Table Search

1 spinlock_t hash_lock;
2

3 struct hash_table

4 {

5 long nbuckets;

6 struct node **buckets;
7 };

8

9 typedef struct node {

10 unsigned long key;

11 struct node *next;

12 } node_t;

13

14 int hash_search(struct hash_table *h, long key)

15 {

16 struct node *cur;

17 int retval;

18

19 spin_lock(&hash_lock) ;

20 cur = h->bucketskey % h->nbuckets;

21 while (cur != NULL) {

2 if (cur->key >= key) {

23 retval = (cur->key == key);
24 spin_unlock(&hash_lock);
25 return retval;

26 ¥

27 cur = cur->next;

28 }

29 spin_unlock(&hash_lock) ;

30 return O;

31}

Unfortunately, code locking is particularly prone to “lock contention”, where multiple
CPUs need to acquire the lock concurrently. SMP programmers who have taken care of
groups of small children (or groups of older people who are acting like children) will
immediately recognize the danger of having only one of something, as illustrated in
Figure 6.13.

One solution to this problem, named “data locking”, is described in the next section.

6.3.3 Data Locking

Many data structures may be partitioned, with each partition of the data structure having
its own lock. Then the critical sections for each part of the data structure can execute
in parallel, although only one instance of the critical section for a given part could
be executing at a given time. You should use data locking when contention must be
reduced, and where synchronization overhead is not limiting speedups. Data locking
reduces contention by distributing the instances of the overly-large critical section across
multiple data structures, for example, maintaining per-hash-bucket critical sections in a

6.3. SYNCHRONIZATION GRANULARITY 129

Figure 6.13: Lock Contention

hash table, as shown in Listing 6.6. The increased scalability again results in a slight
increase in complexity in the form of an additional data structure, the struct bucket.

In contrast with the contentious situation shown in Figure 6.13, data locking helps
promote harmony, as illustrated by Figure 6.14—and in parallel programs, this almost
always translates into increased performance and scalability. For this reason, data
locking was heavily used by Sequent in both its DYNIX and DYNIX/ptx operating
systems [BK8S5, Inm85, Gar90, Dov90, MD92, MG92, MS93].

Figure 6.14: Data Locking

However, as those who have taken care of small children can again attest, even
providing enough to go around is no guarantee of tranquillity. The analogous situation
can arise in SMP programs. For example, the Linux kernel maintains a cache of files
and directories (called “dcache”). Each entry in this cache has its own lock, but the
entries corresponding to the root directory and its direct descendants are much more

130 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Listing 6.6: Data-Locking Hash Table Search

1 struct hash_table

2 {

3 long nbuckets;

4 struct bucket **buckets;
5 0}

6

7 struct bucket {

8 spinlock_t bucket_lock;
9 node_t *1list_head;

10 };

11

12 typedef struct node {

13 unsigned long key;

14 struct node *next;

15 } node_t;

16
17 int hash_search(struct hash_table *h, long key)

18 {

19 struct bucket *bp;

20 struct node *cur;

21 int retval;

2

23 bp = h->buckets[key % h->nbuckets];

24 spin_lock(&bp->bucket_lock) ;

25 cur = bp->list_head;

26 while (cur != NULL) {

27 if (cur->key >= key) {

28 retval = (cur->key == key);
29 spin_unlock (&bp->bucket_lock) ;
30 return retval;

31 }

32 cur = cur->next;

33 }

34 spin_unlock(&bp->bucket_lock) ;

35 return 0O;

36)

likely to be traversed than are more obscure entries. This can result in many CPUs
contending for the locks of these popular entries, resulting in a situation not unlike that
shown in Figure 6.15.

In many cases, algorithms can be designed to reduce the instance of data skew, and
in some cases eliminate it entirely (as appears to be possible with the Linux kernel’s
dcache [MSS04]). Data locking is often used for partitionable data structures such as
hash tables, as well as in situations where multiple entities are each represented by an
instance of a given data structure. The task list in version 2.6.17 of the Linux kernel is
an example of the latter, each task structure having its own proc_lock.

A key challenge with data locking on dynamically allocated structures is ensuring
that the structure remains in existence while the lock is being acquired. The code in
Listing 6.6 finesses this challenge by placing the locks in the statically allocated hash
buckets, which are never freed. However, this trick would not work if the hash table
were resizeable, so that the locks were now dynamically allocated. In this case, there
would need to be some means to prevent the hash bucket from being freed during the
time that its lock was being acquired.

Quick Quiz 6.14: What are some ways of preventing a structure from being freed while its
lock is being acquired? W

6.3. SYNCHRONIZATION GRANULARITY 131

Figure 6.15: Data Locking and Skew

6.3.4 Data Ownership

Data ownership partitions a given data structure over the threads or CPUs, so that
each thread/CPU accesses its subset of the data structure without any synchronization
overhead whatsoever. However, if one thread wishes to access some other thread’s data,
the first thread is unable to do so directly. Instead, the first thread must communicate
with the second thread, so that the second thread performs the operation on behalf of
the first, or, alternatively, migrates the data to the first thread.

Data ownership might seem arcane, but it is used very frequently:

1. Any variables accessible by only one CPU or thread (such as auto variables in C
and C++) are owned by that CPU or process.

2. An instance of a user interface owns the corresponding user’s context. It is very
common for applications interacting with parallel database engines to be written as
if they were entirely sequential programs. Such applications own the user interface
and his current action. Explicit parallelism is thus confined to the database engine
itself.

3. Parametric simulations are often trivially parallelized by granting each thread
ownership of a particular region of the parameter space. There are also computing
frameworks designed for this type of problem [UniO8a].

If there is significant sharing, communication between the threads or CPUs can result
in significant complexity and overhead. Furthermore, if the most-heavily used data
happens to be that owned by a single CPU, that CPU will be a “hot spot”, sometimes
with results resembling that shown in Figure 6.15. However, in situations where no
sharing is required, data ownership achieves ideal performance, and with code that
can be as simple as the sequential-program case shown in Listing 6.4. Such situations
are often referred to as “embarrassingly parallel”, and, in the best case, resemble the
situation previously shown in Figure 6.14.

Another important instance of data ownership occurs when the data is read-only, in
which case, all threads can “own” it via replication.

Data ownership will be presented in more detail in Chapter 8.

132 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

6.3.5 Locking Granularity and Performance

This section looks at locking granularity and performance from a mathematical syn-
chronization-efficiency viewpoint. Readers who are uninspired by mathematics might
choose to skip this section.

The approach is to use a crude queueing model for the efficiency of synchronization
mechanism that operate on a single shared global variable, based on an M/M/1 queue.
M/M/1 queuing models are based on an exponentially distributed “inter-arrival rate”
A and an exponentially distributed “service rate” p. The inter-arrival rate A can be
thought of as the average number of synchronization operations per second that the
system would process if the synchronization were free, in other words, A is an inverse
measure of the overhead of each non-synchronization unit of work. For example, if each
unit of work was a transaction, and if each transaction took one millisecond to process,
excluding synchronization overhead, then A would be 1,000 transactions per second.

The service rate u is defined similarly, but for the average number of synchronization
operations per second that the system would process if the overhead of each transaction
was zero, and ignoring the fact that CPUs must wait on each other to complete
their synchronization operations, in other words, u can be roughly thought of as the
synchronization overhead in absence of contention. For example, suppose that each
synchronization operation involves an atomic increment instruction, and that a computer
system is able to do an atomic increment every 25 nanoseconds on each CPU to a private
variable.!® The value of u is therefore about 40,000,000 atomic increments per second.

Of course, the value of A increases with increasing numbers of CPUs, as each CPU is
capable of processing transactions independently (again, ignoring synchronization):

A =ndy 6.1)

where n is the number of CPUs and A is the transaction-processing capability of a
single CPU. Note that the expected time for a single CPU to execute a single transaction
is 1/2p.

Because the CPUs have to “wait in line” behind each other to get their chance to
increment the single shared variable, we can use the M/M/1 queueing-model expression
for the expected total waiting time:

T=—— 6.2)

Substituting the above value of A:

Now, the efficiency is just the ratio of the time required to process a transaction
in absence of synchronization (1/4p) to the time required including synchronization
(T +1/2p):

1/

“TTr 64)

13 of course, if there are 8 CPUs all incrementing the same shared variable, then each
CPU must wait at least 175 nanoseconds for each of the other CPUs to do its increment before
consuming an additional 25 nanoseconds doing its own increment. In fact, the wait will be
longer due to the need to move the variable from one CPU to another.

6.3. SYNCHRONIZATION GRANULARITY 133

%)

c Tl s e e e

.0 N T TN

(@) N\ " \

e \ ty

— \ |

w \ '-. .

c | i 100

Re) | : T

IS ! . 75

= ‘. 150 §

I ' H

e L +

N I

Qe 10 .

c |

S, IR T T T N R A

2 cfoRoRoNoNoRoNoNe)
NOTOOR OO O

2

Number of CPUs (Threads)

Figure 6.16: Synchronization Efficiency

Substituting the above value for 7' and simplifying:

no_
pTRL

e= F—— 6.5
/% -(n-1) 65)
But the value of u/Ay is just the ratio of the time required to process the transaction
(absent synchronization overhead) to that of the synchronization overhead itself (absent
contention). If we call this ratio f, we have:

f—-n
e =D (6.6)

Figure 6.16 plots the synchronization efficiency e as a function of the number of
CPUs/threads n for a few values of the overhead ratio f. For example, again using the
25-nanosecond atomic increment, the f = 10 line corresponds to each CPU attempting
an atomic increment every 250 nanoseconds, and the f = 100 line corresponds to each
CPU attempting an atomic increment every 2.5 microseconds, which in turn corresponds
to several thousand instructions. Given that each trace drops off sharply with increasing
numbers of CPUs or threads, we can conclude that synchronization mechanisms based
on atomic manipulation of a single global shared variable will not scale well if used
heavily on current commodity hardware. This is a mathematical depiction of the forces
leading to the parallel counting algorithms that were discussed in Chapter 5.

The concept of efficiency is useful even in cases having little or no formal synchro-
nization. Consider for example a matrix multiply, in which the columns of one matrix
are multiplied (via “dot product”) by the rows of another, resulting in an entry in a
third matrix. Because none of these operations conflict, it is possible to partition the
columns of the first matrix among a group of threads, with each thread computing the
corresponding columns of the result matrix. The threads can therefore operate entirely
independently, with no synchronization overhead whatsoever, as is done in matmul. c.
One might therefore expect a perfect efficiency of 1.0.

However, Figure 6.17 tells a different story, especially for a 64-by-64 matrix multiply,
which never gets above an efficiency of about 0.3, even when running single-threaded,
and drops sharply as more threads are added. The 128-by-128 matrix does better, but still
fails to demonstrate much performance increase with added threads. The 256-by-256

134 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Matrix Multiply Efficiency

1 10 100

Number of CPUs (Threads)
Figure 6.17: Matrix Multiply Efficiency

matrix does scale reasonably well, but only up to a handful of CPUs. The 512-by-512
matrix multiply’s efficiency is measurably less than 1.0 on as few as 10 threads, and
even the 1024-by-1024 matrix multiply deviates noticeably from perfection at a few
tens of threads. Nevertheless, this figure clearly demonstrates the performance and
scalability benefits of batching: If you must incur synchronization overhead, you may
as well get your money’s worth.

Quick Quiz 6.15: How can a single-threaded 64-by-64 matrix multiple possibly have an
efficiency of less than 1.0?7 Shouldn’t all of the traces in Figure 6.17 have efficiency of exactly
1.0 when running on only one thread? W

Given these inefficiencies, it is worthwhile to look into more-scalable approaches
such as the data locking described in Section 6.3.3 or the parallel-fastpath approach
discussed in the next section.

Quick Quiz 6.16: How are data-parallel techniques going to help with matrix multiply? It is
already data parallel!!! W

6.4 Parallel Fastpath

There are two ways of meeting difficulties: You alter
the difficulties, or you alter yourself to meet them.

Phyllis Bottome

Fine-grained (and therefore usually higher-performance) designs are typically more
complex than are coarser-grained designs. In many cases, most of the overhead is
incurred by a small fraction of the code [Knu73]. So why not focus effort on that small
fraction?

This is the idea behind the parallel-fastpath design pattern, to aggressively parallelize
the common-case code path without incurring the complexity that would be required to
aggressively parallelize the entire algorithm. You must understand not only the specific
algorithm you wish to parallelize, but also the workload that the algorithm will be

6.4. PARALLEL FASTPATH 135

T T
Reader/Writer

Locking
-

Y
RCU

Parallel ~—
Fastpath
Hierarchical

Locking
-

A

Allocator

Caches
e

Figure 6.18: Parallel-Fastpath Design Patterns

subjected to. Great creativity and design effort is often required to construct a parallel
fastpath.

Parallel fastpath combines different patterns (one for the fastpath, one elsewhere) and
is therefore a template pattern. The following instances of parallel fastpath occur often
enough to warrant their own patterns, as depicted in Figure 6.18:

1. Reader/Writer Locking (described below in Section 6.4.1).

2. Read-copy update (RCU), which may be used as a high-performance replacement
for reader/writer locking, is introduced in Section 9.5, and will not be discussed
further in this chapter.

3. Hierarchical Locking ([McK96a]), which is touched upon in Section 6.4.2.

4. Resource Allocator Caches ([McK96a, MS93]). See Section 6.4.3 for more detail.

6.4.1 Reader/Writer Locking

If synchronization overhead is negligible (for example, if the program uses coarse-
grained parallelism with large critical sections), and if only a small fraction of the
critical sections modify data, then allowing multiple readers to proceed in parallel can
greatly increase scalability. Writers exclude both readers and each other. There are
many implementations of reader-writer locking, including the POSIX implementation
described in Section 4.2.4. Listing 6.7 shows how the hash search might be implemented
using reader-writer locking.

Reader/writer locking is a simple instance of asymmetric locking. Snaman [ST87]
describes a more ornate six-mode asymmetric locking design used in several clustered
systems. Locking in general and reader-writer locking in particular is described
extensively in Chapter 7.

6.4.2 Hierarchical Locking

The idea behind hierarchical locking is to have a coarse-grained lock that is held only
long enough to work out which fine-grained lock to acquire. Listing 6.8 shows how our

136 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Listing 6.7: Reader-Writer-Locking Hash Table Search

1 rwlock_t hash_lock;
2

3 struct hash_table
4 {

long nbuckets;
struct node **buckets;

};

® <9 o w

9 typedef struct node {

10 unsigned long key;

11 struct node *next;

12 } node_t;

13

14 int hash_search(struct hash_table *h, long key)

15 {

16 struct node *cur;

17 int retval;

18

19 read_lock(&hash_lock);

20 cur = h->bucketskey % h->nbuckets;

21 while (cur != NULL) {

2 if (cur->key >= key) {

23 retval = (cur->key == key);
24 read_unlock(&hash_lock);
25 return retval;

26 ¥

27 cur = cur->next;

28 }

29 read_unlock(&hash_lock) ;

30 return 0O;

31}

hash-table search might be adapted to do hierarchical locking, but also shows the great
weakness of this approach: we have paid the overhead of acquiring a second lock, but
we only hold it for a short time. In this case, the simpler data-locking approach would
be simpler and likely perform better.

[Quick Quiz 6.17: In what situation would hierarchical locking work well? W]

6.4.3 Resource Allocator Caches

This section presents a simplified schematic of a parallel fixed-block-size memory
allocator. More detailed descriptions may be found in the literature [MG92, MS93,
BAO1, MSKO1] or in the Linux kernel [Tor03].

6.4.3.1 Parallel Resource Allocation Problem

The basic problem facing a parallel memory allocator is the tension between the need to
provide extremely fast memory allocation and freeing in the common case and the need
to efficiently distribute memory in face of unfavorable allocation and freeing patterns.

To see this tension, consider a straightforward application of data ownership to this
problem—simply carve up memory so that each CPU owns its share. For example,
suppose that a system with two CPUs has two gigabytes of memory (such as the one that
I am typing on right now). We could simply assign each CPU one gigabyte of memory,
and allow each CPU to allocate from its own gigabyte, without the need for locking
and its complexities and overheads. Unfortunately, this scheme fails when CPU 0 only
allocates memory and CPU 1 only frees it, as happens in simple producer-consumer
workloads.

6.4. PARALLEL FASTPATH 137

Listing 6.8: Hierarchical-Locking Hash Table Search

1 struct hash_table

2 {

3 long nbuckets;

4 struct bucket **buckets;
5}

6

7 struct bucket {

8 spinlock_t bucket_lock;
9 node_t *1list_head;

10 };

11

12 typedef struct node {

13 spinlock_t node_lock;
14 unsigned long key;

15 struct node *next;

16 } node_t;

17
18 int hash_search(struct hash_table *h, long key)

19 {

20 struct bucket *bp;

21 struct node *cur;

22 int retval;

23

24 bp = h->bucketskey % h->nbuckets;

25 spin_lock (&bp->bucket_lock);

26 cur = bp->list_head;

27 while (cur != NULL) {

28 if (cur->key >= key) {

29 spin_lock(&cur—>node_lock) H
30 spin_unlock(&bp->bucket_lock) ;
31 retval = (cur->key == key);
32 spin_unlock(&cur->node_lock) ;
33 return retval;

34 }

35 cur = cur->next;

36 ¥

37 spin_unlock(&bp->bucket_lock) ;

38 return 0;

39 }

The other extreme, code locking, suffers from excessive lock contention and over-
head [MS93].

6.4.3.2 Parallel Fastpath for Resource Allocation

The commonly used solution uses parallel fastpath with each CPU owning a modest
cache of blocks, and with a large code-locked shared pool for additional blocks. To
prevent any given CPU from monopolizing the memory blocks, we place a limit on the
number of blocks that can be in each CPU’s cache. In a two-CPU system, the flow of
memory blocks will be as shown in Figure 6.19: when a given CPU is trying to free a
block when its pool is full, it sends blocks to the global pool, and, similarly, when that
CPU is trying to allocate a block when its pool is empty, it retrieves blocks from the
global pool.

6.4.3.3 Data Structures

The actual data structures for a “toy” implementation of allocator caches are shown
in Listing 6.9. The “Global Pool” of Figure 6.19 is implemented by globalmem of
type struct globalmempool, and the two CPU pools by the per-thread variable
perthreadmem of type struct perthreadmempool. Both of these data structures
have arrays of pointers to blocks in their pool fields, which are filled from index zero

138 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

2 =

3 3

5 5

> >

3 3
S)
i |
| ‘
| cPUO Pool CPU1Pool | |
! :
! ;
| (Owned by CPU 0) (Owned by CPU 1) |
| J

Allocate/Free

Figure 6.19: Allocator Cache Schematic

Listing 6.9: Allocator-Cache Data Structures
| #define TARGET_POOL_SIZE 3

> #define GLOBAL_POOL_SIZE 40

3

4 struct globalmempool {

5 spinlock_t mutex;
6 int cur;
7 struct memblock *pool[GLOBAL_POOL_SIZE];

8 } globalmem;

9

10 struct perthreadmempool {

11 int cur;

12 struct memblock *pool[2 * TARGET_POOL_SIZE];

13 };

14

15 DEFINE_PER_THREAD(struct perthreadmempool, perthreadmem);

upwards. Thus, if globalmem.pool [3] is NULL, then the remainder of the array from
index 4 up must also be NULL. The cur fields contain the index of the highest-numbered
full element of the pool array, or —1 if all elements are empty. All elements from
globalmem.pool [0] through globalmem.pool [globalmem. cur] must be full, and
all the rest must be empty.'*

The operation of the pool data structures is illustrated by Figure 6.20, with the six boxes
representing the array of pointers making up the pool field, and the number preceding
them representing the cur field. The shaded boxes represent non-NULL pointers, while
the empty boxes represent NULL pointers. An important, though potentially confusing,
invariant of this data structure is that the cur field is always one smaller than the number
of non-NULL pointers.

14 Both pool sizes (TARGET_POOL_SIZE and GLOBAL_POOL_SIZE) are unrealistically
small, but this small size makes it easier to single-step the program in order to get a feel for
its operation.

6.4. PARALLEL FASTPATH 139

o o []

Figure 6.20: Allocator Pool Schematic

Listing 6.10: Allocator-Cache Allocator Function

| struct memblock *memblock_alloc(void)

2 {

3 int i;

4 struct memblock *p;

5 struct perthreadmempool *pcpp;

6

7 pcpp = &__get_thread_var (perthreadmem) ;

8 if (pcpp->cur < 0) {

9 spin_lock(&globalmem.mutex) ;

10 for (i = 0; i < TARGET_POOL_SIZE &&

11 globalmem.cur >= 0; i++) {
12 pcpp->pool[i]l = globalmem.pool[globalmem.cur];
13 globalmem.pool[globalmem.cur--] = NULL;
14 }

15 pcpp->cur = i - 1;

16 spin_unlock(&globalmem.mutex) ;

17 }

18 if (pcpp—>cur >= 0) {

19 p = pcpp->pool [pcpp->cur];

20 pepp->pool [pcpp->cur--] = NULL;

21 return p;

2 }

23 return NULL;

24 }

6.4.3.4 Allocation Function

The allocation function memblock_alloc () may be seen in Listing 6.10. Line 7 picks
up the current thread’s per-thread pool, and line 8 checks to see if it is empty.

If so, lines 9-16 attempt to refill it from the global pool under the spinlock acquired
on line 9 and released on line 16. Lines 10—14 move blocks from the global to the
per-thread pool until either the local pool reaches its target size (half full) or the global
pool is exhausted, and line 15 sets the per-thread pool’s count to the proper value.

In either case, line 18 checks for the per-thread pool still being empty, and if not,
lines 19-21 remove a block and return it. Otherwise, line 23 tells the sad tale of memory
exhaustion.

140 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Listing 6.11: Allocator-Cache Free Function

1 void memblock_free(struct memblock *p)

2 {

3 int i;

4 struct perthreadmempool *pcpp;

5

6 pcpp = &__get_thread_var (perthreadmem) ;

7 if (pcpp->cur >= 2 * TARGET_POOL_SIZE - 1) {

8 spin_lock(&globalmem.mutex) ;

9 for (i = pcpp->cur; i >= TARGET_POOL_SIZE; i--) {
10 globalmem.pool [++globalmem.cur] = pcpp->pooll[il;
11 pcpp->pool[i]l = NULL;

12

13 pcpp->cur = ij

14 spin_unlock(&globalmem.mutex) ;

15 }

16 pcpp->pool [++pcpp->cur] = p;

17 }

6.4.3.5 Free Function

Listing 6.11 shows the memory-block free function. Line 6 gets a pointer to this thread’s
pool, and line 7 checks to see if this per-thread pool is full.

If so, lines 8—15 empty half of the per-thread pool into the global pool, with lines 8
and 14 acquiring and releasing the spinlock. Lines 9—12 implement the loop moving
blocks from the local to the global pool, and line 13 sets the per-thread pool’s count to
the proper value.

In either case, line 16 then places the newly freed block into the per-thread pool.

Quick Quiz 6.18: Doesn’t this resource-allocator design resemble that of the approximate
limit counters covered in Section 5.3? W

6.4.3.6 Performance

Rough performance results'> are shown in Figure 6.21, running on a dual-core Intel
x86 running at 1 GHz (4300 bogomips per CPU) with at most six blocks allowed in
each CPU’s cache. In this micro-benchmark, each thread repeatedly allocates a group
of blocks and then frees all the blocks in that group, with the number of blocks in the
group being the “allocation run length” displayed on the x-axis. The y-axis shows the
number of successful allocation/free pairs per microsecond—tfailed allocations are not
counted. The “X”’s are from a two-thread run, while the “+”s are from a single-threaded
run.

Note that run lengths up to six scale linearly and give excellent performance, while run
lengths greater than six show poor performance and almost always also show negative
scaling. It is therefore quite important to size TARGET_POOL_SIZE sufficiently large,
which fortunately is usually quite easy to do in actual practice [MSKO01], especially
given today’s large memories. For example, in most systems, it is quite reasonable to
set TARGET _POOL_SIZE to 100, in which case allocations and frees are guaranteed to
be confined to per-thread pools at least 99 % of the time.

As can be seen from the figure, the situations where the common-case data-ownership
applies (run lengths up to six) provide greatly improved performance compared to the

15 This data was not collected in a statistically meaningful way, and therefore should be
viewed with great skepticism and suspicion. Good data-collection and -reduction practice is
discussed in Chapter 11. That said, repeated runs gave similar results, and these results match
more careful evaluations of similar algorithms.

6.4. PARALLEL FASTPATH 141

30 T T T T
pe] SOXXXX
g 25L -
[0]
[%2]
o
S 20k _
S 0
o
Q T
= 45 | .
[0]
o
[T
2 10 X 4t n
-% P gt
g X
8 s| XX 4
b= XXPSXK S X XXX X K

0 ! ! ! !

0 5 10 15 20 25

Allocation Run Length

Figure 6.21: Allocator Cache Performance

cases where locks must be acquired. Avoiding synchronization in the common case will
be a recurring theme through this book.

Quick Quiz 6.19: In Figure 6.21, there is a pattern of performance rising with increasing run
length in groups of three samples, for example, for run lengths 10, 11, and 12. Why? B

Quick Quiz 6.20: Allocation failures were observed in the two-thread tests at run lengths of
19 and greater. Given the global-pool size of 40 and the per-thread target pool size s of three,
number of threads n equal to two, and assuming that the per-thread pools are initially empty
with none of the memory in use, what is the smallest allocation run length m at which failures
can occur? (Recall that each thread repeatedly allocates m block of memory, and then frees the
m blocks of memory.) Alternatively, given n threads each with pool size s, and where each
thread repeatedly first allocates m blocks of memory and then frees those m blocks, how large
must the global pool size be? Note: Obtaining the correct answer will require you to examine
the smpalloc. c source code, and very likely single-step it as well. You have been warned! W

6.4.3.7 Real-World Design

The toy parallel resource allocator was quite simple, but real-world designs expand on
this approach in a number of ways.

First, real-world allocators are required to handle a wide range of allocation sizes, as
opposed to the single size shown in this toy example. One popular way to do this is to
offer a fixed set of sizes, spaced so as to balance external and internal fragmentation,
such as in the late-1980s BSD memory allocator [MK88]. Doing this would mean that
the “globalmem” variable would need to be replicated on a per-size basis, and that the
associated lock would similarly be replicated, resulting in data locking rather than the
toy program’s code locking.

Second, production-quality systems must be able to repurpose memory, meaning that
they must be able to coalesce blocks into larger structures, such as pages [MS93]. This
coalescing will also need to be protected by a lock, which again could be replicated on a
per-size basis.

Third, coalesced memory must be returned to the underlying memory system, and
pages of memory must also be allocated from the underlying memory system. The

142 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Table 6.1: Schematic of Real-World Parallel Allocator

Level Locking Purpose

Per-thread pool Data ownership High-speed
allocation

Global block pool Data locking Distributing blocks
among threads

Coalescing Data locking Combining blocks
into pages

System memory Code locking Memory from/to
system

locking required at this level will depend on that of the underlying memory system, but
could well be code locking. Code locking can often be tolerated at this level, because
this level is so infrequently reached in well-designed systems [MSKO1].

Despite this real-world design’s greater complexity, the underlying idea is the same—
repeated application of parallel fastpath, as shown in Table 6.1.

6.5 Beyond Partitioning

It is all right to aim high if you have plenty of
ammunition.

Hawley R. Everhart

This chapter has discussed how data partitioning can be used to design simple linearly
scalable parallel programs. Section 6.3.4 hinted at the possibilities of data replication,
which will be used to great effect in Section 9.5.

The main goal of applying partitioning and replication is to achieve linear speedups,
in other words, to ensure that the total amount of work required does not increase
significantly as the number of CPUs or threads increases. A problem that can be
solved via partitioning and/or replication, resulting in linear speedups, is embarrassingly
parallel. But can we do better?

To answer this question, let us examine the solution of labyrinths and mazes. Of
course, labyrinths and mazes have been objects of fascination for millennia [Wik12],
so it should come as no surprise that they are generated and solved using computers,
including biological computers [Adal1], GPGPUs [Eri0O8], and even discrete hard-
ware [KFCI11]. Parallel solution of mazes is sometimes used as a class project in
universities [ETH11, Unil0] and as a vehicle to demonstrate the benefits of parallel-
programming frameworks [Fos10].

Common advice is to use a parallel work-queue algorithm (PWQ) [ETH11, Fos10].
This section evaluates this advice by comparing PWQ against a sequential algorithm
(SEQ) and also against an alternative parallel algorithm, in all cases solving ran-
domly generated square mazes. Section 6.5.1 discusses PWQ, Section 6.5.2 discusses
an alternative parallel algorithm, Section 6.5.3 analyzes its anomalous performance,
Section 6.5.4 derives an improved sequential algorithm from the alternative parallel algo-

6.5. BEYOND PARTITIONING 143

Listing 6.12: SEQ Pseudocode

| int maze_solve(maze *mp, cell sc, cell ec)

2 {

3 cell ¢ = sc;

4 cell n;

5 int vi = 0;

6

7 maze_try_visit_cell(mp, c, c, &n, 1);
8 for (53) {

9 while (!maze_find_any_next_cell(mp, c, &n)) {
10 if (++vi >= mp->vi)

11 return 0;

12 ¢ = mp->visited[vi].c;
13 ¥

14 do {

15 if (n == ec) {

16 return 1;

17 }

18 c =n;

19 } while (maze_find_any_next_cell(mp, c, &n));
20 ¢ = mp->visited[vi].c;

21 ¥

2 }

rithm, Section 6.5.5 makes further performance comparisons, and finally Section 6.5.6
presents future directions and concluding remarks.

6.5.1 Work-Queue Parallel Maze Solver

PWQ is based on SEQ, which is shown in Listing 6.12 (pseudocode for maze_seq. c).
The maze is represented by a 2D array of cells and a linear-array-based work queue
named ->visited.

Line 7 visits the initial cell, and each iteration of the loop spanning lines 8-21 traverses
passages headed by one cell. The loop spanning lines 9-13 scans the ->visited[]
array for a visited cell with an unvisited neighbor, and the loop spanning lines 14-19
traverses one fork of the submaze headed by that neighbor. Line 20 initializes for the
next pass through the outer loop.

The pseudocode formaze_try_visit_cell() isshownonlines 1-12 of Listing 6.13
(maze.c). Line 4 checks to see if cells c and t are adjacent and connected, while line 5
checks to see if cell t has not yet been visited. The celladdr () function returns the
address of the specified cell. If either check fails, line 6 returns failure. Line 7 indicates
the next cell, line 8 records this cell in the next slot of the ->visited[] array, line 9
indicates that this slot is now full, and line 10 marks this cell as visited and also records
the distance from the maze start. Line 11 then returns success.

The pseudocode for maze_find_any_next_cell() is shown on lines 14-28 of
Listing 6.13 (maze. c). Line 17 picks up the current cell’s distance plus 1, while lines 19,
21, 23, and 25 check the cell in each direction, and lines 20, 22, 24, and 26 return
true if the corresponding cell is a candidate next cell. The prevcol(), nextcol(),
prevrow(), and nextrow() each do the specified array-index-conversion operation.
If none of the cells is a candidate, line 27 returns false.

The path is recorded in the maze by counting the number of cells from the starting
point, as shown in Figure 6.22, where the starting cell is in the upper left and the
ending cell is in the lower right. Starting at the ending cell and following consecutively
decreasing cell numbers traverses the solution.

The parallel work-queue solver is a straightforward parallelization of the algorithm
shown in Listings 6.12 and 6.13. Line 10 of Listing 6.12 must use fetch-and-add, and

144 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Listing 6.13: SEQ Helper Pseudocode

int maze_try_visit_cell(struct maze *mp, cell c, cell t,

1
2 cell *n, int d)
3 {
4 if (!maze_cells_connected(mp, c, t) ||
5 (*celladdr (mp, t) & VISITED))
6 return O;
7 *n = t;
8 mp->visited[mp->vi] = t;
9 mp—>vi++;
10 *celladdr (mp, t) |= VISITED | d;
11 return 1;
12}
13
14 int maze_find_any_next_cell(struct maze *mp, cell c,
15 cell *n)
16 {
17 int d = (*celladdr(mp, c) & DISTANCE) + 1;
18
19 if (maze_try_visit_cell(mp, c, prevcol(c), n, d))
20 return 1;
21 if (maze_try_visit_cell(mp, c, nextcol(c), n, d))
22 return 1;
23 if (maze_try_visit_cell(mp, c, prevrow(c), n, d))
24 return 1;
25 if (maze_try_visit_cell(mp, c, nextrow(c), n, d))
26 return 1;
27 return O;
28 }
1 2 3
2 3 4
3 4 5

Figure 6.22: Cell-Number Solution Tracking

the local variable vi must be shared among the various threads. Lines 5 and 10 of
Listing 6.13 must be combined into a CAS loop, with CAS failure indicating a loop
in the maze. Lines 8-9 of this listing must use fetch-and-add to arbitrate concurrent
attempts to record cells in the ->visited[] array.

This approach does provide significant speedups on a dual-CPU Lenovo W500
running at 2.53 GHz, as shown in Figure 6.23, which shows the cumulative distribution
functions (CDFs) for the solution times of the two algorithms, based on the solution of
500 different square 500-by-500 randomly generated mazes. The substantial overlap of
the projection of the CDFs onto the x-axis will be addressed in Section 6.5.3.

Interestingly enough, the sequential solution-path tracking works unchanged for
the parallel algorithm. However, this uncovers a significant weakness in the parallel
algorithm: At most one thread may be making progress along the solution path at any
given time. This weakness is addressed in the next section.

6.5.2 Alternative Parallel Maze Solver

Youthful maze solvers are often urged to start at both ends, and this advice has been
repeated more recently in the context of automated maze solving [Unil0]. This advice

6.5. BEYOND PARTITIONING 145

Probability
o
o
T

0 | | | | |
0 20 40 60 80 100 120 140

CDF of Solution Time (ms)

Figure 6.23: CDF of Solution Times For SEQ and PWQ

Listing 6.14: Partitioned Parallel Solver Pseudocode

| int maze_solve_child(maze *mp, cell *visited, cell sc)
2 {

3 cell c;

4 cell n;

5 int vi = 0;

6

7 myvisited = visited; myvi = &vi;

3 c = visited[vil;

9 do {

10 while (!maze_find_any_next_cell(mp, c, &n)) {
1 if (visited[++vil.row < 0)

12 return 0;

13 if (READ_ONCE (mp->done))

14 return 1;

15 c = visited[vil;

16 }

17 do {

18 if (READ_ONCE (mp->done))

19 return 1;

20 c = n;

21 } while (maze_find_any_next_cell(mp, c, &n));
2 c = visited[vil;

23 } while (!READ_ONCE (mp->done));

24 return 1;

25}

amounts to partitioning, which has been a powerful parallelization strategy in the
context of parallel programming for both operating-system kernels [BK85, Inm85] and
applications [Pat10]. This section applies this strategy, using two child threads that start
at opposite ends of the solution path, and takes a brief look at the performance and
scalability consequences.

The partitioned parallel algorithm (PART), shown in Listing 6.14 (maze_part.c), is
similar to SEQ, but has a few important differences. First, each child thread has its own
visited array, passed in by the parent as shown on line 1, which must be initialized to
all [-1, —1]. Line 7 stores a pointer to this array into the per-thread variable myvisited
to allow access by helper functions, and similarly stores a pointer to the local visit
index. Second, the parent visits the first cell on each child’s behalf, which the child
retrieves on line 8. Third, the maze is solved as soon as one child locates a cell that has
been visited by the other child. When maze_try_visit_cell() detects this, it sets
a ->done field in the maze structure. Fourth, each child must therefore periodically
check the ->done field, as shown on lines 13, 18, and 23. The READ_ONCE() primitive

146 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Listing 6.15: Partitioned Parallel Helper Pseudocode

int maze_try_visit_cell(struct maze *mp, int c, int t,

1
2 int *n, int d)

3 {

4 cell_t t;

5 cell_t *tp;

6 int vi;

7

3 if (!maze_cells_connected(mp, c, t))

9 return 0;

10 tp = celladdr(mp, t);

11 do {

12 t = READ_ONCE(*tp) ;

13 if (t & VISITED) {

14 if ((t & TID) !'= mytid)
15 mp->done = 1;
16 return O;

17 }

18 } while (!CAS(tp, t, t | VISITED | myid | d));
19 *n = t;

20 vi = (kmyvi)++;

21 myvisited[vi] = t;

22 return 1;

23 }

Probability

© 9 © o o o

- N W A~ OO
1 T T T 1

o L= I I I I
0 20 40 60 80 100 120 140
CDF of Solution Time (ms)

Figure 6.24: CDF of Solution Times For SEQ, PWQ, and PART

must disable any compiler optimizations that might combine consecutive loads or that
might reload the value. A C++1x volatile relaxed load suffices [Bec11]. Finally, the
maze_find_any_next_cell() function must use compare-and-swap to mark a cell
as visited, however no constraints on ordering are required beyond those provided by
thread creation and join.

The pseudocode for maze_find_any_next_cell() is identical to that shown in
Listing 6.13, but the pseudocode for maze_try_visit_cell() differs, and is shown
in Listing 6.15. Lines 8-9 check to see if the cells are connected, returning failure if not.
The loop spanning lines 1118 attempts to mark the new cell visited. Line 13 checks to
see if it has already been visited, in which case line 16 returns failure, but only after
line 14 checks to see if we have encountered the other thread, in which case line 15
indicates that the solution has been located. Line 19 updates to the new cell, lines 20
and 21 update this thread’s visited array, and line 22 returns success.

Performance testing revealed a surprising anomaly, shown in Figure 6.24. The median
solution time for PART (17 milliseconds) is more than four times faster than that of

6.5. BEYOND PARTITIONING 147

09 - ; i
08 - ; -
07 |- i i
06 |- / -
05| SEQPWQ /SEQ/PART -
04 ,
03 - : .
02 / -
01 j -

0

Probability

0.1 1 10 100
CDF of Speedup Relative to SEQ

Figure 6.25: CDF of SEQ/PWQ and SEQ/PART Solution-Time Ratios

l l

— -
— Ej
I

Figure 6.26: Reason for Small Visit Percentages

—o

J

SEQ (79 milliseconds), despite running on only two threads. The next section analyzes
this anomaly.

6.5.3 Performance Comparison I

The first reaction to a performance anomaly is to check for bugs. Although the algorithms
were in fact finding valid solutions, the plot of CDFs in Figure 6.24 assumes independent
data points. This is not the case: The performance tests randomly generate a maze, and
then run all solvers on that maze. It therefore makes sense to plot the CDF of the ratios
of solution times for each generated maze, as shown in Figure 6.25, greatly reducing
the CDFs’ overlap. This plot reveals that for some mazes, PART is more than forty
times faster than SEQ. In contrast, PWQ is never more than about two times faster than
SEQ. A forty-times speedup on two threads demands explanation. After all, this is
not merely embarrassingly parallel, where partitionability means that adding threads
does not increase the overall computational cost. It is instead humiliatingly parallel:
Adding threads significantly reduces the overall computational cost, resulting in large
algorithmic superlinear speedups.

Further investigation showed that PART sometimes visited fewer than 2 % of the
maze’s cells, while SEQ and PWQ never visited fewer than about 9 %. The reason for
this difference is shown by Figure 6.26. If the thread traversing the solution from the
upper left reaches the circle, the other thread cannot reach the upper-right portion of the
maze. Similarly, if the other thread reaches the square, the first thread cannot reach the
lower-left portion of the maze. Therefore, PART will likely visit a small fraction of the

148 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

M r—T—T T T T T T T 7

120

iy

100

80

60

Solution Time (ms)

40

20

0 SETL
0 10 20 30 40 50 60 70 80 90 100
Percent of Maze Cells Visited

Figure 6.27: Correlation Between Visit Percentage and Solution Time

<i>lo _8 “|ol]

(®)

=
J»O ()0 e-T
]

Figure 6.28: PWQ Potential Contention Points

non-solution-path cells. In short, the superlinear speedups are due to threads getting
in each others’ way. This is a sharp contrast with decades of experience with parallel
programming, where workers have struggled to keep threads out of each others’ way.

Figure 6.27 confirms a strong correlation between cells visited and solution time
for all three methods. The slope of PART’s scatterplot is smaller than that of SEQ,
indicating that PART’s pair of threads visits a given fraction of the maze faster than can
SEQ’s single thread. PART’s scatterplot is also weighted toward small visit percentages,
confirming that PART does less total work, hence the observed humiliating parallelism.

The fraction of cells visited by PWQ is similar to that of SEQ. In addition, PWQ’s
solution time is greater than that of PART, even for equal visit fractions. The reason for
this is shown in Figure 6.28, which has a red circle on each cell with more than two
neighbors. Each such cell can result in contention in PWQ, because one thread can
enter but two threads can exit, which hurts performance, as noted earlier in this chapter.
In contrast, PART can incur such contention but once, namely when the solution is
located. Of course, SEQ never contends.

Although PART’s speedup is impressive, we should not neglect sequential optimiza-
tions. Figure 6.29 shows that SEQ, when compiled with -O3, is about twice as fast as
unoptimized PWQ, approaching the performance of unoptimized PART. Compiling all
three algorithms with -O3 gives results similar to (albeit faster than) those shown in
Figure 6.25, except that PWQ provides almost no speedup compared to SEQ, in keeping
with Amdahl’s Law [Amd67]. However, if the goal is to double performance compared
to unoptimized SEQ, as opposed to achieving optimality, compiler optimizations are
quite attractive.

6.5. BEYOND PARTITIONING 149

1 ———rrrr— =
' e
.

0.9
0.8
07 L
0.6 P .
0.5 PWQ ’ -
0.4 g
0.3
0.2
0.1

0 L
0.1 1 10 100

CDF of Speedup Relative to SEQ

’
l/ PART

Probability
T T 1

I -

I3
/ ISEQ-03 E

S
2l L

Figure 6.29: Effect of Compiler Optimization (-O3)

{ [
09 - ;
08 -
07 |-
06 [
05
0.4
03
02

0.1

Probability
T

0
0.1 1 10 100
CDF of Speedup Relative to SEQ (-O3)

Figure 6.30: Partitioned Coroutines

Cache alignment and padding often improves performance by reducing false sharing.
However, for these maze-solution algorithms, aligning and padding the maze-cell array
degrades performance by up to 42 % for 1000x1000 mazes. Cache locality is more
important than avoiding false sharing, especially for large mazes. For smaller 20-by-20
or 50-by-50 mazes, aligning and padding can produce up to a 40 % performance
improvement for PART, but for these small sizes, SEQ performs better anyway because
there is insufficient time for PART to make up for the overhead of thread creation and
destruction.

In short, the partitioned parallel maze solver is an interesting example of an algorithmic
superlinear speedup. If “algorithmic superlinear speedup” causes cognitive dissonance,

please proceed to the next section.

6.5.4 Alternative Sequential Maze Solver

The presence of algorithmic superlinear speedups suggests simulating parallelism via
co-routines, for example, manually switching context between threads on each pass
through the main do-while loop in Listing 6.14. This context switching is straightforward
because the context consists only of the variables ¢ and vi: Of the numerous ways to
achieve the effect, this is a good tradeoff between context-switch overhead and visit

150 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Speedup Relative to SEQ (-O3)
(o2}
T
1

10 100 1000
Maze Size

Figure 6.31: Varying Maze Size vs. SEQ

1.8 ——y

16 S o4
14 | :
12 |

1 -
0.8 -
06 [
04 -

02

Speedup Relative to COPART (-O3)

10 100 1000
Maze Size

Figure 6.32: Varying Maze Size vs. COPART

percentage. As can be seen in Figure 6.30, this coroutine algorithm (COPART) is quite
effective, with the performance on one thread being within about 30 % of PART on two
threads (maze_2seq.c).

6.5.5 Performance Comparison II

Figures 6.31 and 6.32 show the effects of varying maze size, comparing both PWQ
and PART running on two threads against either SEQ or COPART, respectively, with
90-percent-confidence error bars. PART shows superlinear scalability against SEQ and
modest scalability against COPART for 100-by-100 and larger mazes. PART exceeds
theoretical energy-efficiency breakeven against COPART at roughly the 200-by-200
maze size, given that power consumption rises as roughly the square of the frequency
for high frequencies [MudO1], so that 1.4x scaling on two threads consumes the same
energy as a single thread at equal solution speeds. In contrast, PWQ shows poor
scalability against both SEQ and COPART unless unoptimized: Figures 6.31 and 6.32
were generated using -O3.

Figure 6.33 shows the performance of PWQ and PART relative to COPART. For
PART runs with more than two threads, the additional threads were started evenly
spaced along the diagonal connecting the starting and ending cells. Simplified link-state
routing [BG87] was used to detect early termination on PART runs with more than two

6.5. BEYOND PARTITIONING 151

3.5 T T T T T T

3 1

25 - B .

Mean Speedup Relative to COPART (-O3)

1 2 3 4 5 6 7 8
Number of Threads

Figure 6.33: Mean Speedup vs. Number of Threads, 1000x1000 Maze

threads (the solution is flagged when a thread is connected to both beginning and end).
PWQ performs quite poorly, but PART hits breakeven at two threads and again at five
threads, achieving modest speedups beyond five threads. Theoretical energy efficiency
breakeven is within the 90-percent-confidence interval for seven and eight threads. The
reasons for the peak at two threads are (1) the lower complexity of termination detection
in the two-thread case and (2) the fact that there is a lower probability of the third
and subsequent threads making useful forward progress: Only the first two threads are
guaranteed to start on the solution line. This disappointing performance compared to
results in Figure 6.32 is due to the less-tightly integrated hardware available in the larger
and older Xeon system running at 2.66 GHz.

6.5.6 Future Directions and Conclusions

Much future work remains. First, this section applied only one technique used by
human maze solvers. Others include following walls to exclude portions of the maze
and choosing internal starting points based on the locations of previously traversed
paths. Second, different choices of starting and ending points might favor different
algorithms. Third, although placement of the PART algorithm’s first two threads is
straightforward, there are any number of placement schemes for the remaining threads.
Optimal placement might well depend on the starting and ending points. Fourth, study
of unsolvable mazes and cyclic mazes is likely to produce interesting results. Fifth, the
lightweight C++11 atomic operations might improve performance. Sixth, it would be
interesting to compare the speedups for three-dimensional mazes (or of even higher-order
mazes). Finally, for mazes, humiliating parallelism indicated a more-efficient sequential
implementation using coroutines. Do humiliatingly parallel algorithms always lead to
more-efficient sequential implementations, or are there inherently humiliatingly parallel
algorithms for which coroutine context-switch overhead overwhelms the speedups?

This section demonstrated and analyzed parallelization of maze-solution algorithms.
A conventional work-queue-based algorithm did well only when compiler optimizations
were disabled, suggesting that some prior results obtained using high-level/overhead
languages will be invalidated by advances in optimization.

This section gave a clear example where approaching parallelism as a first-class
optimization technique rather than as a derivative of a sequential algorithm paves
the way for an improved sequential algorithm. High-level design-time application of

152 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

parallelism is likely to be a fruitful field of study. This section took the problem of
solving mazes from mildly scalable to humiliatingly parallel and back again. It is hoped
that this experience will motivate work on parallelism as a first-class design-time whole-
application optimization technique, rather than as a grossly suboptimal after-the-fact
micro-optimization to be retrofitted into existing programs.

6.6 Partitioning, Parallelism, and Optimization

Knowledge is of no value unless you put it into
practice.

Anton Chekhov

Most important, although this chapter has demonstrated that applying parallelism at
the design level gives excellent results, this final section shows that this is not enough.
For search problems such as maze solution, this section has shown that search strategy
is even more important than parallel design. Yes, for this particular type of maze,
intelligently applying parallelism identified a superior search strategy, but this sort of
luck is no substitute for a clear focus on search strategy itself.

As noted back in Section 2.2, parallelism is but one potential optimization of many.
A successful design needs to focus on the most important optimization. Much though I
might wish to claim otherwise, that optimization might or might not be parallelism.

However, for the many cases where parallelism is the right optimization, the next
section covers that synchronization workhorse, locking.

Locking is the worst general-purpose
synchronization mechanism except for all those other
mechanisms that have been tried from time to time.

With apologies to the memory of Winston Churchill
and to whoever he was quoting

Chapter 7

Locking

In recent concurrency research, the role of villain is often played by locking. In many
papers and presentations, locking stands accused of promoting deadlocks, convoying,
starvation, unfairness, data races, and all manner of other concurrency sins. Interestingly
enough, the role of workhorse in production-quality shared-memory parallel software is
played by, you guessed it, locking. This chapter will look into this dichotomy between
villain and hero, as fancifully depicted in Figures 7.1 and 7.2.

There are a number of reasons behind this Jekyll-and-Hyde dichotomy:

1. Many of locking’s sins have pragmatic design solutions that work well in most
cases, for example:

(a) Use of lock hierarchies to avoid deadlock.

(b) Deadlock-detection tools, for example, the Linux kernel’s lockdep facil-
ity [Cor06a].

(c) Locking-friendly data structures, such as arrays, hash tables, and radix trees,
which will be covered in Chapter 10.

2. Some of locking’s sins are problems only at high levels of contention, levels
reached only by poorly designed programs.

3. Some of locking’s sins are avoided by using other synchronization mechanisms in
concert with locking. These other mechanisms include statistical counters (see
Chapter 5), reference counters (see Section 9.2), hazard pointers (see Section 9.3),
sequence-locking readers (see Section 9.4), RCU (see Section 9.5), and simple
non-blocking data structures (see Section 14.2).

4. Until quite recently, almost all large shared-memory parallel programs were
developed in secret, so that it was difficult for most researchers to learn of these
pragmatic solutions.

5. Locking works extremely well for some software artifacts and extremely poorly for
others. Developers who have worked on artifacts for which locking works well
can be expected to have a much more positive opinion of locking than those who
have worked on artifacts for which locking works poorly, as will be discussed in
Section 7.5.

153

154 CHAPTER 7. LOCKING

Figure 7.2: Locking: Workhorse or Hero?

6. All good stories need a villain, and locking has a long and honorable history
serving as a research-paper whipping boy.

Quick Quiz 7.1: Just how can serving as a whipping boy be considered to be in any way
honorable???

This chapter will give an overview of a number of ways to avoid locking’s more
serious sins.

Edition.2-rc3

7.1. STAYING ALIVE 155

Lock 1
Thread A %[Lock 2]
[Lock 3]e Thread B
Thread C 9[Lock 4]

Figure 7.3: Deadlock Cycle

7.1 Staying Alive

I work to stay alive.

Bette Davis

Given that locking stands accused of deadlock and starvation, one important concern
for shared-memory parallel developers is simply staying alive. The following sections
therefore cover deadlock, livelock, starvation, unfairness, and inefficiency.

7.1.1 Deadlock

Deadlock occurs when each of a group of threads is holding at least one lock while at the
same time waiting on a lock held by a member of that same group. This happens even in
groups containing a single thread when that thread attempts to acquire a non-recursive
lock that it already holds. Deadlock can therefore occur even given but one thread and
one lock!

Without some sort of external intervention, deadlock is forever. No thread can acquire
the lock it is waiting on until that lock is released by the thread holding it, but the thread
holding it cannot release it until the holding thread acquires the lock that it is in turn
waiting on.

We can create a directed-graph representation of a deadlock scenario with nodes for
threads and locks, as shown in Figure 7.3. An arrow from a lock to a thread indicates
that the thread holds the lock, for example, Thread B holds Locks 2 and 4. An arrow
from a thread to a lock indicates that the thread is waiting on the lock, for example,
Thread B is waiting on Lock 3.

A deadlock scenario will always contain at least one deadlock cycle. In Figure 7.3,
this cycle is Thread B, Lock 3, Thread C, Lock 4, and back to Thread B.

Quick Quiz 7.2: But the definition of lock-based deadlock only said that each thread was
holding at least one lock and waiting on another lock that was held by some thread. How do
you know that there is a cycle? H

Although there are some software environments such as database systems that can
recover from an existing deadlock, this approach requires either that one of the threads be

156 CHAPTER 7. LOCKING

killed or that a lock be forcibly stolen from one of the threads. This killing and forcible
stealing can be appropriate for transactions, but is often problematic for kernel and
application-level use of locking: dealing with the resulting partially updated structures
can be extremely complex, hazardous, and error-prone.

Therefore, kernels and applications should instead avoid deadlocks. Deadlock-
avoidance strategies include locking hierarchies (Section 7.1.1.1), local locking hier-
archies (Section 7.1.1.2), layered locking hierarchies (Section 7.1.1.3), strategies for
dealing with APIs containing pointers to locks (Section 7.1.1.4), conditional locking
(Section 7.1.1.5), acquiring all needed locks first (Section 7.1.1.6), single-lock-at-a-time
designs (Section 7.1.1.7), and strategies for signal/interrupt handlers (Section 7.1.1.8).
Although there is no deadlock-avoidance strategy that works perfectly for all situations,
there is a good selection of tools to choose from.

7.1.1.1 Locking Hierarchies

Locking hierarchies order the locks and prohibit acquiring locks out of order. In
Figure 7.3, we might order the locks numerically, thus forbidding a thread from
acquiring a given lock if it already holds a lock with the same or a higher number.
Thread B has violated this hierarchy because it is attempting to acquire Lock 3 while
holding Lock 4. This violation permitted the deadlock to occur.

Again, to apply a locking hierarchy, order the locks and prohibit out-of-order
lock acquisition. In large program, it is wise to use tools to enforce your locking
hierarchy [CorO6a].

7.1.1.2 Local Locking Hierarchies

However, the global nature of locking hierarchies make them difficult to apply to library
functions. After all, the program using a given library function has not even been
written yet, so how can the poor library-function implementor possibly hope to adhere
to the yet-to-be-written program’s locking hierarchy?

One special (but common) case is when the library function does not invoke any of
the caller’s code. In this case, the caller’s locks will never be acquired while holding any
of the library’s locks, so that there cannot be a deadlock cycle containing locks from
both the library and the caller.

Quick Quiz 7.3: Are there any exceptions to this rule, so that there really could be a deadlock
cycle containing locks from both the library and the caller, even given that the library code
never invokes any of the caller’s functions? H

But suppose that a library function does invoke the caller’s code. For example,
gsort () invokes a caller-provided comparison function. A concurrent implementation
of gsort () likely uses locking, which might result in deadlock in the perhaps-unlikely
case where the comparison function is a complicated function involving also locking.
How can the library function avoid deadlock?

The golden rule in this case is “Release all locks before invoking unknown code.”
To follow this rule, the gsort () function must release all of its locks before invoking
the comparison function. Thus gsort () will not be holding any of its locks while the
comparison function acquires any of the caller’s locks, thus avoiding deadlock.

Quick Quiz 7.4: Butif gsort () releases all its locks before invoking the comparison function,
how can it protect against races with other qsort () threads? H

7.1. STAYING ALIVE 157

Figure 7.4: Without gsort () Local Locking Hierarchy

Figure 7.5: Local Locking Hierarchy for gsort ()

To see the benefits of local locking hierarchies, compare Figures 7.4 and 7.5. In
both figures, application functions foo () and bar () invoke gsort () while holding
Locks A and B, respectively. Because this is a parallel implementation of gsort (),
it acquires Lock C. Function foo () passes function cmp () to gsort (), and cmp ()
acquires Lock B. Function bar () passes a simple integer-comparison function (not
shown) to gsort (), and this simple function does not acquire any locks.

Now, if gsort () holds Lock C while calling cmp() in violation of the golden
release-all-locks rule above, as shown in Figure 7.4, deadlock can occur. To see this,
suppose that one thread invokes foo () while a second thread concurrently invokes
bar (). The first thread will acquire Lock A and the second thread will acquire Lock B.
If the first thread’s call to gsort () acquires Lock C, then it will be unable to acquire
Lock B when it calls cmp (). But the first thread holds Lock C, so the second thread’s
call to gsort () will be unable to acquire it, and thus unable to release Lock B, resulting
in deadlock.

Edition.2-rc3

158 CHAPTER 7. LOCKING

Figure 7.6: Layered Locking Hierarchy for gsort ()

In contrast, if gsort () releases Lock C before invoking the comparison function,
which is unknown code from gsort () ’s perspective, then deadlock is avoided as shown
in Figure 7.5.

If each module releases all locks before invoking unknown code, then deadlock is
avoided if each module separately avoids deadlock. This rule therefore greatly simplifies
deadlock analysis and greatly improves modularity.

7.1.1.3 Layered Locking Hierarchies

Unfortunately, it might not be possible for gsort () to release all of its locks before
invoking the comparison function. In this case, we cannot construct a local locking
hierarchy by releasing all locks before invoking unknown code. However, we can instead
construct a layered locking hierarchy, as shown in Figure 7.6. here, the cmp () function
uses a new Lock D that is acquired after all of Locks A, B, and C, avoiding deadlock.
We therefore have three layers to the global deadlock hierarchy, the first containing
Locks A and B, the second containing Lock C, and the third containing Lock D.

Please note that it is not typically possible to mechanically change cmp () to use the
new Lock D. Quite the opposite: It is often necessary to make profound design-level
modifications. Nevertheless, the effort required for such modifications is normally a
small price to pay in order to avoid deadlock. More to the point, this potential deadlock
should preferably be detected at design time, before any code has been generated!

For another example where releasing all locks before invoking unknown code is
impractical, imagine an iterator over a linked list, as shown in Listing 7.1 (locked_
list.c). The list_start () function acquires a lock on the list and returns the first

Edition.2-rc3

7.1. STAYING ALIVE 159

Listing 7.1: Concurrent List Iterator
1 struct locked_list {
2 spinlock_t s;

struct cds_list_head h;

3

4}

5

6 struct cds_list_head *list_start(struct locked_list x*1p)
7 9

8 spin_lock(&lp->s);

9 return list_next(lp, &lp->h);

0}

11

12 struct cds_list_head *list_next(struct locked_list *lp,
13 struct cds_list_head *np)
14 {

15 struct cds_list_head *ret;

16

17 ret = np->next;

18 if (ret == &lp->h) {

19 spin_unlock(&lp->s);

20 ret = NULL;

21 ¥

22 return ret;

23}

Listing 7.2: Concurrent List Iterator Usage

struct list_ints {

1

2 struct cds_list_head n;

3 int a;

4}

5

6 void list_print(struct locked_list *1p)
7 {

8 struct cds_list_head *np;

9 struct list_ints *ip;

10

11 np = list_start(lp);

12 while (np != NULL) {

13 ip = cds_list_entry(np, struct list_ints, n);
14 printf ("\t%d\n", ip->a);
15 np = list_next(lp, np);
16 }

17 3

element (if there is one), and 1ist_next () either returns a pointer to the next element
in the list or releases the lock and returns NULL if the end of the list has been reached.

Listing 7.2 shows how this list iterator may be used. Lines 1—4 define the 1ist_ints
element containing a single integer, and lines 6-17 show how to iterate over the list.
Line 11 locks the list and fetches a pointer to the first element, line 13 provides a pointer
to our enclosing 1ist_ints structure, line 14 prints the corresponding integer, and
line 15 moves to the next element. This is quite simple, and hides all of the locking.

That is, the locking remains hidden as long as the code processing each list element
does not itself acquire a lock that is held across some other call to 1ist_start () or
list_next (), which results in deadlock. We can avoid the deadlock by layering the
locking hierarchy to take the list-iterator locking into account.

This layered approach can be extended to an arbitrarily large number of layers, but
each added layer increases the complexity of the locking design. Such increases in
complexity are particularly inconvenient for some types of object-oriented designs, in
which control passes back and forth among a large group of objects in an undisciplined
manner.! This mismatch between the habits of object-oriented design and the need to

! One name for this is “object-oriented spaghetti code.”

160 CHAPTER 7. LOCKING

Listing 7.3: Protocol Layering and Deadlock

1 spin_lock(&lock2);

2 layer_2_processing(pkt);

3 nextlayer = layer_1(pkt);

4 spin_lock(&nextlayer->lockl);
5

6

4

layer_1_processing(pkt);
spin_unlock(&lock2) ;
spin_unlock(&nextlayer->lockl);

avoid deadlock is an important reason why parallel programming is perceived by some
to be so difficult.
Some alternatives to highly layered locking hierarchies are covered in Chapter 9.

7.1.1.4 Locking Hierarchies and Pointers to Locks

Although there are some exceptions, an external API containing a pointer to a lock
is very often a misdesigned API. Handing an internal lock to some other software
component is after all the antithesis of information hiding, which is in turn a key design
principle.

Quick Quiz 7.5: Name one common exception where it is perfectly reasonable to pass a
pointer to a lock into a function. W

One exception is functions that hand off some entity, where the caller’s lock must
be held until the handoff is complete, but where the lock must be released before the
function returns. One example of such a function is the POSIX pthread_cond_wait ()
function, where passing an pointer to a pthread_mutex_t prevents hangs due to lost
wakeups.

Quick Quiz 7.6: Doesn’t the fact that pthread_cond_wait () first releases the mutex and
then re-acquires it eliminate the possibility of deadlock? W

In short, if you find yourself exporting an API with a pointer to a lock as an argument
or the as the return value, do yourself a favor and carefully reconsider your API design.
It might well be the right thing to do, but experience indicates that this is unlikely.

7.1.1.5 Conditional Locking

But suppose that there is no reasonable locking hierarchy. This can happen in real life,
for example, in layered network protocol stacks where packets flow in both directions.
In the networking case, it might be necessary to hold the locks from both layers when
passing a packet from one layer to another. Given that packets travel both up and down
the protocol stack, this is an excellent recipe for deadlock, as illustrated in Listing 7.3.
Here, a packet moving down the stack towards the wire must acquire the next layer’s lock
out of order. Given that packets moving up the stack away from the wire are acquiring
the locks in order, the lock acquisition in line 4 of the listing can result in deadlock.

One way to avoid deadlocks in this case is to impose a locking hierarchy, but when
it is necessary to acquire a lock out of order, acquire it conditionally, as shown in
Listing 7.4. Instead of unconditionally acquiring the layer-1 lock, line 5 conditionally
acquires the lock using the spin_trylock() primitive. This primitive acquires the
lock immediately if the lock is available (returning non-zero), and otherwise returns
zero without acquiring the lock.

7.1. STAYING ALIVE 161

Listing 7.4: Avoiding Deadlock Via Conditional Locking

1 retry:

2 spin_lock(&lock2);

3 layer_2_processing(pkt);

4 nextlayer = layer_1(pkt);

5 if (!spin_trylock(&nextlayer->lock1)) {
6 spin_unlock(&lock2) ;

7 spin_lock(&nextlayer->lockl);

8 spin_lock(&lock2);

9 if (layer_1(pkt) != nextlayer) {
10 spin_unlock(&nextlayer->lock1);
11 spin_unlock(&lock?2) ;

12 goto retry;

13 b

14 }

15 layer_1_processing(pkt);

16 spin_unlock(&lock?2) ;

17 spin_unlock(&nextlayer—->lock1);

If spin_trylock() was successful, line 15 does the needed layer-1 processing.
Otherwise, line 6 releases the lock, and lines 7 and 8 acquire them in the correct order.
Unfortunately, there might be multiple networking devices on the system (e.g., Ethernet
and WiFi), so that the 1ayer_1 () function must make a routing decision. This decision
might change at any time, especially if the system is mobile.” Therefore, line 9 must
recheck the decision, and if it has changed, must release the locks and start over.

Quick Quiz 7.7: Can the transformation from Listing 7.3 to Listing 7.4 be applied universally?
|

Quick Quiz 7.8: But the complexity in Listing 7.4 is well worthwhile given that it avoids
deadlock, right? H

7.1.1.6 Acquire Needed Locks First

In an important special case of conditional locking, all needed locks are acquired before
any processing is carried out. In this case, processing need not be idempotent: if it turns
out to be impossible to acquire a given lock without first releasing one that was already
acquired, just release all the locks and try again. Only once all needed locks are held
will any processing be carried out.

However, this procedure can result in /ivelock, which will be discussed in Section 7.1.2.

Quick Quiz 7.9: When using the “acquire needed locks first” approach described in
Section 7.1.1.6, how can livelock be avoided? H

A related approach, two-phase locking [BHGS87], has seen long production use in
transactional database systems. In the first phase of a two-phase locking transaction, locks
are acquired but not released. Once all needed locks have been acquired, the transaction
enters the second phase, where locks are released, but not acquired. This locking
approach allows databases to provide serializability guarantees for their transactions,
in other words, to guarantee that all values seen and produced by the transactions are
consistent with some global ordering of all the transactions. Many such systems rely on
the ability to abort transactions, although this can be simplified by avoiding making
any changes to shared data until all needed locks are acquired. Livelock and deadlock
are issues in such systems, but practical solutions may be found in any of a number of
database textbooks.

2 And, in contrast to the 1900s, mobility is the common case.

162 CHAPTER 7. LOCKING

7.1.1.7 Single-Lock-at-a-Time Designs

In some cases, it is possible to avoid nesting locks, thus avoiding deadlock. For example,
if a problem is perfectly partitionable, a single lock may be assigned to each partition.
Then a thread working on a given partition need only acquire the one corresponding
lock. Because no thread ever holds more than one lock at a time, deadlock is impossible.

However, there must be some mechanism to ensure that the needed data structures
remain in existence during the time that neither lock is held. One such mechanism is
discussed in Section 7.4 and several others are presented in Chapter 9.

7.1.1.8 Signal/Interrupt Handlers

Deadlocks involving signal handlers are often quickly dismissed by noting that it is
not legal to invoke pthread_mutex_lock() from within a signal handler [Ope97].
However, it is possible (though often unwise) to hand-craft locking primitives that can
be invoked from signal handlers. Besides which, almost all operating-system kernels
permit locks to be acquired from within interrupt handlers, which are the kernel analog
to signal handlers.

The trick is to block signals (or disable interrupts, as the case may be) when acquiring
any lock that might be acquired within a signal (or an interrupt) handler. Furthermore,
if holding such a lock, it is illegal to attempt to acquire any lock that is ever acquired
outside of a signal handler without blocking signals.

Quick Quiz 7.10: Suppose Lock A is never acquired within a signal handler, but Lock B
is acquired both from thread context and by signal handlers. Suppose further that Lock A
is sometimes acquired with signals unblocked. Why is it illegal to acquire Lock A holding
Lock B? W

If a lock is acquired by the handlers for several signals, then each and every one of
these signals must be blocked whenever that lock is acquired, even when that lock is
acquired within a signal handler.

[Quick Quiz 7.11: How can you legally block signals within a signal handler? W]

Unfortunately, blocking and unblocking signals can be expensive in some operating
systems, notably including Linux, so performance concerns often mean that locks
acquired in signal handlers are only acquired in signal handlers, and that lockless
synchronization mechanisms are used to communicate between application code and
signal handlers.

Or that signal handlers are avoided completely except for handling fatal errors.

Quick Quiz 7.12: If acquiring locks in signal handlers is such a bad idea, why even discuss
ways of making it safe? H

7.1.1.9 Discussion

There are a large number of deadlock-avoidance strategies available to the shared-
memory parallel programmer, but there are sequential programs for which none of them
is a good fit. This is one of the reasons that expert programmers have more than one
tool in their toolbox: locking is a powerful concurrency tool, but there are jobs better
addressed with other tools.

7.1. STAYING ALIVE 163

Listing 7.5: Abusing Conditional Locking
| void threadi(void)

2 {

3 retry:

4 spin_lock(&lockl);

5 do_one_thing();

6 if (!spin_trylock(&lock2)) {
7 spin_unlock(&lockl) ;
8 goto retry;

9 }

10 do_another_thing();

11 spin_unlock(&lock2) ;

12 spin_unlock(&lockl);

13}

14

15 void thread2(void)

16 {

17 retry:

18 spin_lock(&lock2);

19 do_a_third_thing();

20 if (!spin_trylock(&lockl)) {
21 spin_unlock(&lock2) ;
22 goto retry;

23 }

24 do_a_fourth_thing();

25 spin_unlock(&lockl) ;

26 spin_unlock(&lock2) ;

27 }

Quick Quiz 7.13: Given an object-oriented application that passes control freely among a
group of objects such that there is no straightforward locking hierarchy, layered or otherwise,
how can this application be parallelized? B

¢ Also known as “object-oriented spaghetti code.”

Nevertheless, the strategies described in this section have proven quite useful in many
settings.

7.1.2 Livelock and Starvation

Although conditional locking can be an effective deadlock-avoidance mechanism, it
can be abused. Consider for example the beautifully symmetric example shown in
Listing 7.5. This example’s beauty hides an ugly livelock. To see this, consider the
following sequence of events:

1. Thread 1 acquires lock1 on line 4, then invokes do_one_thing().

Thread 2 acquires 1ock?2 on line 18, then invokes do_a_third_thing().
Thread 1 attempts to acquire 1ock2 on line 6, but fails because Thread 2 holds it.
Thread 2 attempts to acquire lock1 on line 20, but fails because Thread 1 holds it.

Thread 1 releases lock1 on line 7, then jumps to retry at line 3.

AN o

Thread 2 releases 1ock?2 on line 21, and jumps to retry at line 17.

7. The livelock dance repeats from the beginning.

[Quick Quiz 7.14: How can the livelock shown in Listing 7.5 be avoided? W]

164 CHAPTER 7. LOCKING

Listing 7.6: Conditional Locking and Exponential Backoft
| void threadi(void)

2 {

3 unsigned int wait = 1;

4 retry:

5 spin_lock(&lockl);

6 do_one_thing() ;

7 if (!spin_trylock(&lock2)) {
3 spin_unlock(&lockl) ;
9 sleep(wait);

10 wait = wait << 1;

11 goto retry;

12 }

13 do_another_thing();

14 spin_unlock(&lock?2) ;

15 spin_unlock(&lockl);

16 }

17

18 void thread2(void)

19 {

20 unsigned int wait = 1;

21 retry:

2 spin_lock(&lock2);

23 do_a_third_thing();

2 if (!spin_trylock(&lock1)) {
25 spin_unlock(&lock2) ;
26 sleep(wait);

27 wait = wait << 1;

28 goto retry;

29 ¥

30 do_a_fourth_thing();

31 spin_unlock(&lockl) ;

32 spin_unlock(&lock2);

33}

Livelock can be thought of as an extreme form of starvation where a group of threads
starves, rather than just one of them.?

Livelock and starvation are serious issues in software transactional memory implemen-
tations, and so the concept of contention manager has been introduced to encapsulate
these issues. In the case of locking, simple exponential backoff can often address
livelock and starvation. The idea is to introduce exponentially increasing delays before
each retry, as shown in Listing 7.6.

[Quick Quiz 7.15: What problems can you spot in the code in Listing 7.6? H]

For better results, backoffs should be bounded, and even better high-contention results
are obtained via queued locking [And90], which is discussed more in Section 7.3.2.
Of course, best of all is to use a good parallel design that avoids these problems by
maintaining low lock contention.

7.1.3 Unfairness

Unfairness can be thought of as a less-severe form of starvation, where a subset of
threads contending for a given lock are granted the lion’s share of the acquisitions. This
can happen on machines with shared caches or NUMA characteristics, for example, as
shown in Figure 7.7. If CPU 0 releases a lock that all the other CPUs are attempting to
acquire, the interconnect shared between CPUs 0 and 1 means that CPU 1 will have an

3 Try not to get too hung up on the exact definitions of terms like livelock, starvation,
and unfairness. Anything that causes a group of threads to fail to make adequate forward
progress is a bug that needs to be fixed, and debating names doesn’t fix bugs.

7.1. STAYING ALIVE 165

CPUO CPU 1 CPU 2 CPU3
Cache Cache Cache Cache
Interconnect Interconnect
~ =

Memory <—% System Interconnect %—> Memory

Z X
Interconnect Interconnect
Cache Cache Cache Cache
CPU 4 CPU5 CPU6 CPU7

Speed-of-Light Round-Trip Distance in Vacuum
for 1.8 GHz Clock Period (8 cm)

Figure 7.7: System Architecture and Lock Unfairness

advantage over CPUs 2—7. Therefore CPU 1 will likely acquire the lock. If CPU 1 holds
the lock long enough for CPU 0 to be requesting the lock by the time CPU 1 releases it
and vice versa, the lock can shuttle between CPUs 0 and 1, bypassing CPUs 2-7.

Quick Quiz 7.16: Wouldn’t it be better just to use a good parallel design so that lock contention
was low enough to avoid unfairness? Wl

7.1.4 Inefficiency

Locks are implemented using atomic instructions and memory barriers, and often
involve cache misses. As we saw in Chapter 3, these instructions are quite expensive,
roughly two orders of magnitude greater overhead than simple instructions. This can be
a serious problem for locking: If you protect a single instruction with a lock, you will
increase the overhead by a factor of one hundred. Even assuming perfect scalability,
one hundred CPUs would be required to keep up with a single CPU executing the same
code without locking.

This situation underscores the synchronization-granularity tradeoft discussed in
Section 6.3, especially Figure 6.16: Too coarse a granularity will limit scalability, while
too fine a granularity will result in excessive synchronization overhead.

That said, once a lock is held, the data protected by that lock can be accessed by the
lock holder without interference. Acquiring a lock might be expensive, but once held,
the CPU’s caches are an effective performance booster, at least for large critical sections.

[Quick Quiz 7.17: How might the lock holder be interfered with? Wl]

166 CHAPTER 7. LOCKING

7.2 Types of Locks

Only locks in life are what you think you know, but
don’t. Accept your ignorance and try something new.

Dennis Vickers

There are a surprising number of types of locks, more than this short chapter can
possibly do justice to. The following sections discuss exclusive locks (Section 7.2.1),
reader-writer locks (Section 7.2.2), multi-role locks (Section 7.2.3), and scoped locking
(Section 7.2.4).

7.2.1 Exclusive Locks

Exclusive locks are what they say they are: only one thread may hold the lock at a time.
The holder of such a lock thus has exclusive access to all data protected by that lock,
hence the name.

Of course, this all assumes that this lock is held across all accesses to data purportedly
protected by the lock. Although there are some tools that can help (see for example
Section 12.3.1), the ultimate responsibility for ensuring that the lock is acquired in all
necessary code paths rests with the developer.

Quick Quiz 7.18: Does it ever make sense to have an exclusive lock acquisition immediately
followed by a release of that same lock, that is, an empty critical section?

It is important to note that unconditionally acquiring an exclusive lock has two
effects: (1) Waiting for all prior holders of that lock to release it, and (2) Blocking any
other acquisition attempts until the lock is released. As a result, at lock acquisition
time, any concurrent acquisitions of that lock must be partitioned into prior holders
and subsequent holders. Different types of exclusive locks use different partitioning
strategies [Brall, GGL* 19], for example:

1. Strict FIFO, with acquisitions starting earlier acquiring the lock earlier.

2. Approximate FIFO, with acquisitions starting sufficiently earlier acquiring the lock
earlier.

3. FIFO within priority level, with higher-priority threads acquiring the lock earlier
than any lower-priority threads attempting to acquire the lock at about the same
time, but so that some FIFO ordering applies for threads of the same priority.

4. Random, so that the new lock holder is chosen randomly from all threads attempting
acquisition, regardless of timing.

5. Unfair, so that a given acquisition might never acquire the lock (see Section 7.1.3).

Unfortunately, locking implementations with stronger guarantees typically incur
higher overhead, motivating the wide variety of locking implementations in production
use. For example, real-time systems often require some degree of FIFO ordering within
priority level, and much else besides (see Section 14.3.5.1), while non-realtime systems
subject to high contention might require only enough ordering to avoid starvation, and
finally, non-realtime systems designed to avoid contention might not need fairness at all.

7.2. TYPES OF LOCKS 167

7.2.2 Reader-Writer Locks

Reader-writer locks [CHP71] permit any number of readers to hold the lock concurrently
on the one hand or a single writer to hold the lock on the other. In theory, then, reader-
writer locks should allow excellent scalability for data that is read often and written
rarely. In practice, the scalability will depend on the reader-writer lock implementation.

The classic reader-writer lock implementation involves a set of counters and flags
that are manipulated atomically. This type of implementation suffers from the same
problem as does exclusive locking for short critical sections: The overhead of acquiring
and releasing the lock is about two orders of magnitude greater than the overhead of a
simple instruction. Of course, if the critical section is long enough, the overhead of
acquiring and releasing the lock becomes negligible. However, because only one thread
at a time can be manipulating the lock, the required critical-section size increases with
the number of CPUs.

It is possible to design a reader-writer lock that is much more favorable to readers
through use of per-thread exclusive locks [HW92]. To read, a thread acquires only its
own lock. To write, a thread acquires all locks. In the absence of writers, each reader
incurs only atomic-instruction and memory-barrier overhead, with no cache misses,
which is quite good for a locking primitive. Unfortunately, writers must incur cache
misses as well as atomic-instruction and memory-barrier overhead—multiplied by the
number of threads.

In short, reader-writer locks can be quite useful in a number of situations, but each type
of implementation does have its drawbacks. The canonical use case for reader-writer
locking involves very long read-side critical sections, preferably measured in hundreds
of microseconds or even milliseconds.

As with exclusive locks, unconditionally acquiring a reader-writer lock waits for all
prior conflicting holders of that lock to release it. Here, readers conflict with writers, and
writers with both readers and with other writers. Also as with exclusive locks, holding a
reader-writer lock blocks any subsequent acquisition attempts until the lock is released.
And again as with exclusive locks, at lock acquisition time any concurrent conflicting
acquisitions must be partitioned into prior holders and subsequent holders. However, in
contrast to exclusive locks, some reader-writer locks also similarly partition concurrent
non-conflicting acquisitions in order to avoid starving conflicting acquisitions, for
example:

1. Reader-preference implementations favor readers over writers, possibly allowing
write acquisitions to be indefinitely blocked.

2. Batch-fair implementations ensure that both readers and writers have access by
processing batches, for example, some number of readers, some number of writers,
and so on.

3. Writer-preference implementations favor writers over readers, possibly allowing
read acquisitions to be indefinitely blocked.

And once again, as with exclusive locking, these distinctions matter only under
conditions of high lock contention.

Please keep the waiting/blocking dual nature of locks firmly in mind. This will
be revisited in Chapter 9’s discussion of scalable high-performance special-purpose
alternatives to locking.

168 CHAPTER 7. LOCKING

Table 7.1: VAX/VMS Distributed Lock Manager Policy

g &

= § E =9 &

s & 2 § I

T =2 2 K =

5 5§ 8 3 3 2

Z 5 5 5 8 %

= 2 2 g g 3

=

Z C 0 & & 4
Null (Not Held)
Concurrent Read X
Concurrent Write X X X
Protected Read X X X
Protected Write X X X X
Exclusive X X X X X

7.2.3 Beyond Reader-Writer Locks

Reader-writer locks and exclusive locks differ in their admission policy: exclusive
locks allow at most one holder, while reader-writer locks permit an arbitrary number
of read-holders (but only one write-holder). There is a very large number of possible
admission policies, one of which is that of the VAX/VMS distributed lock manager
(DLM) [ST87], which is shown in Table 7.1. Blank cells indicate compatible modes,
while cells containing “X” indicate incompatible modes.

The VAX/VMS DLM uses six modes. For purposes of comparison, exclusive locks
use two modes (not held and held), while reader-writer locks use three modes (not held,
read held, and write held).

The first mode is null, or not held. This mode is compatible with all other modes,
which is to be expected: If a thread is not holding a lock, it should not prevent any other
thread from acquiring that lock.

The second mode is concurrent read, which is compatible with every other mode except
for exclusive. The concurrent-read mode might be used to accumulate approximate
statistics on a data structure, while permitting updates to proceed concurrently.

The third mode is concurrent write, which is compatible with null, concurrent read,
and concurrent write. The concurrent-write mode might be used to update approximate
statistics, while still permitting reads and concurrent updates to proceed concurrently.

The fourth mode is protected read, which is compatible with null, concurrent read, and
protected read. The protected-read mode might be used to obtain a consistent snapshot
of the data structure, while permitting reads but not updates to proceed concurrently.

The fifth mode is protected write, which is compatible with null and concurrent
read. The protected-write mode might be used to carry out updates to a data structure
that could interfere with protected readers but which could be tolerated by concurrent
readers.

The sixth and final mode is exclusive, which is compatible only with null. The
exclusive mode is used when it is necessary to exclude all other accesses.

It is interesting to note that exclusive locks and reader-writer locks can be emulated
by the VAX/VMS DLM. Exclusive locks would use only the null and exclusive modes,
while reader-writer locks might use the null, protected-read, and protected-write modes.

7.2. TYPES OF LOCKS 169

Quick Quiz 7.19: Is there any other way for the VAX/VMS DLM to emulate a reader-writer
lock? M

Although the VAX/VMS DLM policy has seen widespread production use for
distributed databases, it does not appear to be used much in shared-memory applications.
One possible reason for this is that the greater communication overheads of distributed
databases can hide the greater overhead of the VAX/VMS DLM’s more-complex
admission policy.

Nevertheless, the VAX/VMS DLM is an interesting illustration of just how flexible
the concepts behind locking can be. It also serves as a very simple introduction to the
locking schemes used by modern DBMSes, which can have more than thirty locking
modes, compared to VAX/VMS’s six.

7.2.4 Scoped Locking

The locking primitives discussed thus far require explicit acquisition and release
primitives, for example, spin_lock() and spin_unlock(), respectively. Another
approach is to use the object-oriented “resource allocation is initialization” (RAII)
pattern [ES90].# This pattern is often applied to auto variables in languages like C++,
where the corresponding constructor is invoked upon entry to the object’s scope, and
the corresponding destructor is invoked upon exit from that scope. This can be applied
to locking by having the constructor acquire the lock and the destructor free it.

This approach can be quite useful, in fact in 1990 I was convinced that it was the only
type of locking that was needed.’> One very nice property of RAII locking is that you
don’t need to carefully release the lock on each and every code path that exits that scope,
a property that can eliminate a troublesome set of bugs.

However, RAIl locking also has a dark side. RAII makes it quite difficult to encapsulate
lock acquisition and release, for example, in iterators. In many iterator implementations,
you would like to acquire the lock in the iterator’s “start” function and release it in the
iterator’s “stop” function. RAII locking instead requires that the lock acquisition and
release take place in the same level of scoping, making such encapsulation difficult or
even impossible.

RAII locking also prohibits overlapping critical sections, due to the fact that scopes
must nest. This prohibition makes it difficult or impossible to express a number of
useful constructs, for example, locking trees that mediate between multiple concurrent
attempts to assert an event. Of an arbitrarily large group of concurrent attempts, only
one need succeed, and the best strategy for the remaining attempts is for them to fail as
quickly and painlessly as possible. Otherwise, lock contention becomes pathological on
large systems (where “large” is many hundreds of CPUs).

Example data structures (taken from the Linux kernel’s implementation of RCU) are
shown in Figure 7.8. Here, each CPU is assigned a leaf rcu_node structure, and each
rcu_node structure has a pointer to its parent (named, oddly enough, ->parent), up to
the root rcu_node structure, which has a NULL ->parent pointer. The number of child
rcu_node structures per parent can vary, but is typically 32 or 64. Each rcu_node
structure also contains a lock named ->fgslock.

4 Though more clearly expressed at http: //www.stroustrup.com/bs_fag2.html#
finally.

3> My later work with parallelism at Sequent Computer Systems very quickly disabused
me of this misguided notion.

http://www.stroustrup.com/bs_faq2.html#finally
http://www.stroustrup.com/bs_faq2.html#finally

170 CHAPTER 7. LOCKING

Root rcu_node

Structure
Leaf rcu_node o 0o o Leaf rcu_node
Structure 0 Structure N
T To L I) T T To [I) T
o = - - —
DD 5 L+ |
o o —~
SIS 8 z - z
* €
zZ
E < >
D o
o £ (@]
O 5
o
(@)

Figure 7.8: Locking Hierarchy

The general approach is a tournament, where a given CPU conditionally acquires
its leaf rcu_node structure’s —->fqgslock, and, if successful, attempt to acquire that of
the parent, then release that of the child. In addition, at each level, the CPU checks
a global gp_flags variable, and if this variable indicates that some other CPU has
asserted the event, the first CPU drops out of the competition. This acquire-then-release
sequence continues until either the gp_f1lags variable indicates that someone else won
the tournament, one of the attempts to acquire an ->fgslock fails, or the root rcu_node
structure’s —>fqgslock has been acquired. If the root rcu_node structure’s ->fgslock
is acquired, a function named do_force_quiescent_state() is invoked, but this
function should be invoked at most once every 100 milliseconds.

Simplified code to implement this is shown in Listing 7.7. The purpose of this
function is to mediate between CPUs who have concurrently detected a need to invoke
the do_force_quiescent_state() function. At any given time, it only makes
sense for one instance of do_force_quiescent_state() to be active, so if there are
multiple concurrent callers, we need at most one of them to actually invoke do_force_
quiescent_state(), and we need the rest to (as quickly and painlessly as possible)
give up and leave. Furthermore, if do_force_quiescent_state() has been invoked
within the past 100 milliseconds, there is no need to invoke it again.

To this end, each pass through the loop spanning lines 7—15 attempts to advance up
one level in the rcu_node hierarchy. If the gp_flags variable is already set (line 8) or
if the attempt to acquire the current rcu_node structure’s ->fgslock is unsuccessful
(line 9), then local variable ret is set to 1. If line 10 sees that local variable rnp_old
is non-NULL, meaning that we hold rnp_old’s ->fqs_lock, line 11 releases this lock
(but only after the attempt has been made to acquire the parent rcu_node structure’s
->fgslock). If line 12 sees that either line 8 or 9 saw a reason to give up, line 13
returns to the caller. Otherwise, we must have acquired the current rcu_node structure’s
->fgslock, so line 14 saves a pointer to this structure in local variable rnp_old in
preparation for the next pass through the loop.

7.3. LOCKING IMPLEMENTATION ISSUES 171

Listing 7.7: Conditional Locking to Reduce Contention

1 void force_quiescent_state(struct rcu_node *rnp_leaf)

2 {

3 int ret;

4 struct rcu_node *rnp = rnp_leaf;

5 struct rcu_node *rnp_old = NULL;

6

7 for (; rnp != NULL; rnp = rnp->parent) {

3 ret = (READ_ONCE(gp_flags)) ||

9 'raw_spin_trylock(&rnp->fgslock);
10 if (rnp_old != NULL)

11 raw_spin_unlock (&rnp_old->fqgslock) ;
12 if (ret)

13 return;

14 rnp_old = rnp;

15 }

16 if ('READ_ONCE(gp_flags)) {

17 WRITE_ONCE(gp_flags, 1);

18 do_force_quiescent_state();

19 schedule_timeout_interruptible(HZ / 10);
20 WRITE_ONCE(gp_flags, 0);

21 }

22 raw_spin_unlock (&rnp_old->fgslock) ;

23 }

If control reaches line 16, we won the tournament, and now holds the root rcu_node
structure’s ->fqslock. If line 16 still sees that the global variable gp_flags is zero,
line 17 sets gp_f1lags to one, line 18 invokes do_force_quiescent_state(),line 19
waits for 100 milliseconds, and line 20 resets gp_flags back to zero. Either way,
line 22 releases the root rcu_node structure’s ->fqslock.

Quick Quiz 7.20: The code in Listing 7.7 is ridiculously complicated! Why not conditionally
acquire a single global lock? H

Quick Quiz 7.21: Wait a minute! If we “win” the tournament on line 16 of Listing 7.7, we get
to do all the work of do_force_quiescent_state (). Exactly how is that a win, really? W

This function illustrates the not-uncommon pattern of hierarchical locking. This
pattern is difficult to implement using strict RAII locking,® just like the iterator
encapsulation noted earlier, and so explicit lock/unlock primitives will be needed for the
foreseeable future.

7.3 Locking Implementation Issues

When you translate a dream into reality, it’s never a
full implementation. It is easier to dream than to do.

Shai Agassi

Developers are almost always best-served by using whatever locking primitives are
provided by the system, for example, the POSIX pthread mutex locks [Ope97, But97].
Nevertheless, studying sample implementations can be helpful, as can considering the
challenges posed by extreme workloads and environments.

© Which is why many RAII locking implementations provide a way to leak the lock out of
the scope that it was acquired and into the scope in which it is to be released. However, some
object must mediate the scope leaking, which can add complexity compared to non-RAII
explicit locking primitives.

172 CHAPTER 7. LOCKING

Listing 7.8: Sample Lock Based on Atomic Exchange
1 typedef int xchglock_t;

2 #define DEFINE_XCHG_LOCK(n) xchglock_t n = 0

3

4 void xchg_lock(xchglock_t *xp)

s {

6 while (xchg(xp, 1) == 1) {
7 while (READ_ONCE(*xp) == 1)
8 continue;
9 }

10}

1

12 void xchg_unlock(xchglock_t *xp)

13 {

14 (void)xchg(xp, 0);

15 }

7.3.1 Sample Exclusive-Locking Implementation Based on Atomic
Exchange

This section reviews the implementation shown in listing 7.8. The data structure for this
lock is just an int, as shown on line 1, but could be any integral type. The initial value
of this lock is zero, meaning “unlocked”, as shown on line 2.

Quick Quiz 7.22: Why not rely on the C language’s default initialization of zero instead of
using the explicit initializer shown on line 2 of Listing 7.8? H

Lock acquisition is carried out by the xchg_lock() function shown on lines 4-10.
This function uses a nested loop, with the outer loop repeatedly atomically exchanging
the value of the lock with the value one (meaning “locked”). If the old value was already
the value one (in other words, someone else already holds the lock), then the inner loop
(lines 7-8) spins until the lock is available, at which point the outer loop makes another
attempt to acquire the lock.

repeatedly do the atomic exchange operation on line 6? W

Quick Quiz 7.23: Why bother with the inner loop on lines 7-8 of Listing 7.8? Why not simply ’

Lock release is carried out by the xchg_unlock () function shown on lines 12-15.
Line 14 atomically exchanges the value zero (“unlocked”) into the lock, thus marking it
as having been released.

[Quick Quiz 7.24: Why not simply store zero into the lock word on line 14 of Listing 7.8? .J

This lock is a simple example of a test-and-set lock [SR84], but very similar
mechanisms have been used extensively as pure spinlocks in production.

7.3.2 Other Exclusive-Locking Implementations

There are a great many other possible implementations of locking based on atomic
instructions, many of which are reviewed by Mellor-Crummey and Scott [MCS91].
These implementations represent different points in a multi-dimensional design trade-
off [GGL™* 19, Guil8, McK96b]. For example, the atomic-exchange-based test-and-set
lock presented in the previous section works well when contention is low and has the
advantage of small memory footprint. It avoids giving the lock to threads that cannot
use it, but as a result can suffer from unfairness or even starvation at high contention
levels.

7.3. LOCKING IMPLEMENTATION ISSUES 173

In contrast, ticket lock [MCS91], which is used in the Linux kernel, avoids unfairness
at high contention levels, but as a consequence of its first-in-first-out discipline can
grant the lock to a thread that is currently unable to use it, for example, due to being
preempted, interrupted, or otherwise out of action. However, it is important to avoid
getting too worried about the possibility of preemption and interruption, given that this
preemption and interruption might just as well happen just after the lock was acquired.’

All locking implementations where waiters spin on a single memory location,
including both test-and-set locks and ticket locks, suffer from performance problems at
high contention levels. The problem is that the thread releasing the lock must update the
value of the corresponding memory location. At low contention, this is not a problem:
The corresponding cache line is very likely still local to and writeable by the thread
holding the lock. In contrast, at high levels of contention, each thread attempting to
acquire the lock will have a read-only copy of the cache line, and the lock holder will
need to invalidate all such copies before it can carry out the update that releases the
lock. In general, the more CPUs and threads there are, the greater the overhead incurred
when releasing the lock under conditions of high contention.

This negative scalability has motivated a number of different queued-lock implemen-
tations [And90, GT90, MCS91, WKS94, Cra93, MLH94, TS93]. Queued locks avoid
high cache-invalidation overhead by assigning each thread a queue element. These
queue elements are linked together into a queue that governs the order that the lock
will be granted to the waiting threads. The key point is that each thread spins on its
own queue element, so that the lock holder need only invalidate the first element from
the next thread’s CPU’s cache. This arrangement greatly reduces the overhead of lock
handoff at high levels of contention.

More recent queued-lock implementations also take the system’s architecture into
account, preferentially granting locks locally, while also taking steps to avoid starva-
tion [SSVMO02, RHO3, RHO2, JMRR02, MCMO02]. Many of these can be thought of as
analogous to the elevator algorithms traditionally used in scheduling disk I/O.

Unfortunately, the same scheduling logic that improves the efficiency of queued locks
at high contention also increases their overhead at low contention. Beng-Hong Lim and
Anant Agarwal therefore combined a simple test-and-set lock with a queued lock, using
the test-and-set lock at low levels of contention and switching to the queued lock at high
levels of contention [LA94], thus getting low overhead at low levels of contention and
getting fairness and high throughput at high levels of contention. Browning et al. took
a similar approach, but avoided the use of a separate flag, so that the test-and-set fast
path uses the same sequence of instructions that would be used in a simple test-and-set
lock [BMMMOS5]. This approach has been used in production.

Another issue that arises at high levels of contention is when the lock holder is delayed,
especially when the delay is due to preemption, which can result in priority inversion,
where a low-priority thread holds a lock, but is preempted by a medium priority
CPU-bound thread, which results in a high-priority process blocking while attempting to
acquire the lock. The result is that the CPU-bound medium-priority process is preventing
the high-priority process from running. One solution is priority inheritance [LR80],
which has been widely used for real-time computing [SRL90a, Cor06b], despite some
lingering controversy over this practice [Yod04a, Loc02].

7 Besides, the best way of handling high lock contention is to avoid it in the first place!
However, there are some situations where high lock contention is the lesser of the available
evils, and in any case, studying schemes that deal with high levels of contention is a good
mental exercise.

174 CHAPTER 7. LOCKING

Another way to avoid priority inversion is to prevent preemption while a lock is held.
Because preventing preemption while locks are held also improves throughput, most
proprietary UNIX kernels offer some form of scheduler-conscious synchronization
mechanism [KWS97], largely due to the efforts of a certain sizable database vendor.
These mechanisms usually take the form of a hint that preemption would be inappropriate.
These hints frequently take the form of a bit set in a particular machine register, which
enables extremely low per-lock-acquisition overhead for these mechanisms. In contrast,
Linux avoids these hints, instead getting similar results from a mechanism called
futexes [FRK02, Mol06, Ros06, Drel1].

Interestingly enough, atomic instructions are not strictly needed to implement
locks [Dij65, Lam74]. An excellent exposition of the issues surrounding locking
implementations based on simple loads and stores may be found in Herlihy’s and
Shavit’s textbook [HS08]. The main point echoed here is that such implementations
currently have little practical application, although a careful study of them can be both
entertaining and enlightening. Nevertheless, with one exception described below, such
study is left as an exercise for the reader.

Gamsa et al. [GKAS99, Section 5.3] describe a token-based mechanism in which a
token circulates among the CPUs. When the token reaches a given CPU, it has exclusive
access to anything protected by that token. There are any number of schemes that may
be used to implement the token-based mechanism, for example:

1. Maintain a per-CPU flag, which is initially zero for all but one CPU. When a CPU’s
flag is non-zero, it holds the token. When it finishes with the token, it zeroes its
flag and sets the flag of the next CPU to one (or to any other non-zero value).

2. Maintain a per-CPU counter, which is initially set to the corresponding CPU’s
number, which we assume to range from zero to N — 1, where N is the number
of CPUs in the system. When a CPU’s counter is greater than that of the next
CPU (taking counter wrap into account), the first CPU holds the token. When it is
finished with the token, it sets the next CPU’s counter to a value one greater than
its own counter.

Quick Quiz 7.25: How can you tell if one counter is greater than another, while accounting
for counter wrap? W

[Quick Quiz 7.26: Which is better, the counter approach or the flag approach? H]

This lock is unusual in that a given CPU cannot necessarily acquire it immediately,
even if no other CPU is using it at the moment. Instead, the CPU must wait until the
token comes around to it. This is useful in cases where CPUs need periodic access
to the critical section, but can tolerate variances in token-circulation rate. Gamsa et
al. [GKAS99] used it to implement a variant of read-copy update (see Section 9.5), but
it could also be used to protect periodic per-CPU operations such as flushing per-CPU
caches used by memory allocators [MS93], garbage-collecting per-CPU data structures,
or flushing per-CPU data to shared storage (or to mass storage, for that matter).

The Linux kernel has also seen significant work on locking [Cor14b, Marl8]. As
increasing numbers of people gain familiarity with parallel hardware and parallelize
increasing amounts of code, we can continue to expect more special-purpose locking
primitives to appear, see for example Guerraoui et al. [GGL* 19, Guil8]. Nevertheless,
you should carefully consider this important safety tip: Use the standard synchronization

7.4. LOCK-BASED EXISTENCE GUARANTEES 175

Listing 7.9: Per-Element Locking Without Existence Guarantees

1 int delete(int key)

2 {

3 int b;

4 struct element *p;

5

6 b = hashfunction(key);
7 p = hashtable[b];

8 if (p == NULL || p->key != key)
9 return 0;

10 spin_lock (&p->lock) ;

11 hashtable[b] = NULL;
12 spin_unlock (&p->lock) ;
13 kfree(p);

14 return 1;

15 ¥

primitives whenever humanly possible. The big advantage of the standard synchroniza-
tion primitives over roll-your-own efforts is that the standard primitives are typically
much less bug-prone.®

7.4 Lock-Based Existence Guarantees

Existence precedes and rules essence.

Jean-Paul Sartre

A key challenge in parallel programming is to provide existence guarantees [GKAS99],
so that attempts to access a given object can rely on that object being in existence
throughout a given access attempt. In some cases, existence guarantees are implicit:

1. Global variables and static local variables in the base module will exist as long as
the application is running.

2. Global variables and static local variables in a loaded module will exist as long as
that module remains loaded.

3. A module will remain loaded as long as at least one of its functions has an active
instance.

4. A given function instance’s on-stack variables will exist until that instance returns.

5. If you are executing within a given function or have been called (directly or
indirectly) from that function, then the given function has an active instance.

These implicit existence guarantees are straightforward, though bugs involving
implicit existence guarantees really can happen.

[Quick Quiz 7.27: How can relying on implicit existence guarantees result in a bug? W]

But the more interesting—and troublesome—guarantee involves heap memory: A
dynamically allocated data structure will exist until it is freed. The problem to be

8 And yes, I have done at least my share of roll-your-own synchronization primitives.
However, you will notice that my hair is much greyer than it was before I started doing that
sort of work. Coincidence? Maybe. But are you really willing to risk your own hair turning
prematurely grey?

176 CHAPTER 7. LOCKING

Listing 7.10: Per-Element Locking With Lock-Based Existence Guarantees

1 int delete(int key)

2 {

3 int b;

4 struct element *p;

5 spinlock_t *sp;

6

7 b = hashfunction(key);

8 sp = &locktable[b];

9 spin_lock(sp);

10 p = hashtable[b];

11 if (p == NULL || p->key != key) {
12 spin_unlock(sp);
13 return 0;

14 }

15 hashtable[b] = NULL;

16 spin_unlock(sp) ;

17 kfree(p);

18 return 1;

19 }

solved is to synchronize the freeing of the structure with concurrent accesses to that
same structure. One way to do this is with explicit guarantees, such as locking. If a
given structure may only be freed while holding a given lock, then holding that lock
guarantees that structure’s existence.

But this guarantee depends on the existence of the lock itself. One straightforward
way to guarantee the lock’s existence is to place the lock in a global variable, but global
locking has the disadvantage of limiting scalability. One way of providing scalability
that improves as the size of the data structure increases is to place a lock in each element
of the structure. Unfortunately, putting the lock that is to protect a data element in the
data element itself is subject to subtle race conditions, as shown in Listing 7.9.

Quick Quiz 7.28: What if the element we need to delete is not the first element of the list on
line 8 of Listing 7.9? W

[Quick Quiz 7.29: What race condition can occur in Listing 7.9? H]

One way to fix this example is to use a hashed set of global locks, so that each hash
bucket has its own lock, as shown in Listing 7.10. This approach allows acquiring
the proper lock (on line 9) before gaining a pointer to the data element (on line 10).
Although this approach works quite well for elements contained in a single partitionable
data structure such as the hash table shown in the listing, it can be problematic if a
given data element can be a member of multiple hash tables or given more-complex
data structures such as trees or graphs. Not only can these problems be solved,
but the solutions also form the basis of lock-based software transactional memory
implementations [ST95, DSS06]. However, Chapter 9 describes simpler—and faster—
ways of providing existence guarantees.

7.5. LOCKING: HERO OR VILLAIN? 177
7.5 Locking: Hero or Villain?

You either die a hero or live long enough to become
the villain.

Aaron Eckhart

As is often the case in real life, locking can be either hero or villain, depending on
how it is used and on the problem at hand. In my experience, those writing whole
applications are happy with locking, those writing parallel libraries are less happy, and
those parallelizing existing sequential libraries are extremely unhappy. The following
sections discuss some reasons for these differences in viewpoints.

7.5.1 Locking For Applications: Hero!

When writing an entire application (or entire kernel), developers have full control of
the design, including the synchronization design. Assuming that the design makes
good use of partitioning, as discussed in Chapter 6, locking can be an extremely
effective synchronization mechanism, as demonstrated by the heavy use of locking in
production-quality parallel software.

Nevertheless, although such software usually bases most of its synchronization
design on locking, such software also almost always makes use of other synchroniza-
tion mechanisms, including special counting algorithms (Chapter 5), data ownership
(Chapter 8), reference counting (Section 9.2), sequence locking (Section 9.4), and
read-copy update (Section 9.5). In addition, practitioners use tools for deadlock detec-
tion [Cor06a], lock acquisition/release balancing [Cor04b], cache-miss analysis [Thel1],
hardware-counter-based profiling [EGMdB11, The12b], and many more besides.

Given careful design, use of a good combination of synchronization mechanisms,
and good tooling, locking works quite well for applications and kernels.

7.5.2 Locking For Parallel Libraries: Just Another Tool

Unlike applications and kernels, the designer of a library cannot know the locking
design of the code that the library will be interacting with. In fact, that code might not
be written for years to come. Library designers therefore have less control and must
exercise more care when laying out their synchronization design.

Deadlock is of course of particular concern, and the techniques discussed in Sec-
tion 7.1.1 need to be applied. One popular deadlock-avoidance strategy is therefore
to ensure that the library’s locks are independent subtrees of the enclosing program’s
locking hierarchy. However, this can be harder than it looks.

One complication was discussed in Section 7.1.1.2, namely when library functions
call into application code, with gsort ()’s comparison-function argument being a case
in point. Another complication is the interaction with signal handlers. If an application
signal handler is invoked from a signal received within the library function, deadlock
can ensue just as surely as if the library function had called the signal handler directly.
A final complication occurs for those library functions that can be used between a
fork()/exec() pair, for example, due to use of the system() function. In this case,
if your library function was holding a lock at the time of the fork (), then the child
process will begin life with that lock held. Because the thread that will release the

178 CHAPTER 7. LOCKING

lock is running in the parent but not the child, if the child calls your library function,
deadlock will ensue.
The following strategies may be used to avoid deadlock problems in these cases:

1. Don’t use either callbacks or signals.

Don’t acquire locks from within callbacks or signal handlers.
Let the caller control synchronization.

Parameterize the library API to delegate locking to caller.

Explicitly avoid callback deadlocks.

AN e

Explicitly avoid signal-handler deadlocks.

Each of these strategies is discussed in one of the following sections.

7.5.2.1 Use Neither Callbacks Nor Signals

If a library function avoids callbacks and the application as a whole avoids signals,
then any locks acquired by that library function will be leaves of the locking-hierarchy
tree. This arrangement avoids deadlock, as discussed in Section 7.1.1.1. Although this
strategy works extremely well where it applies, there are some applications that must
use signal handlers, and there are some library functions (such as the gsort () function
discussed in Section 7.1.1.2) that require callbacks.

The strategy described in the next section can often be used in these cases.

7.5.2.2 Avoid Locking in Callbacks and Signal Handlers

If neither callbacks nor signal handlers acquire locks, then they cannot be involved
in deadlock cycles, which allows straightforward locking hierarchies to once again
consider library functions to be leaves on the locking-hierarchy tree. This strategy
works very well for most uses of gsort, whose callbacks usually simply compare the
two values passed in to them. This strategy also works wonderfully for many signal
handlers, especially given that acquiring locks from within signal handlers is generally
frowned upon [Gro01],° but can fail if the application needs to manipulate complex
data structures from a signal handler.

Here are some ways to avoid acquiring locks in signal handlers even if complex data
structures must be manipulated:

1. Use simple data structures based on non-blocking synchronization, as will be
discussed in Section 14.2.1.

2. If the data structures are too complex for reasonable use of non-blocking syn-
chronization, create a queue that allows non-blocking enqueue operations. In
the signal handler, instead of manipulating the complex data structure, add an
element to the queue describing the required change. A separate thread can then
remove elements from the queue and carry out the required changes using normal
locking. There are a number of readily available implementations of concurrent
queues [KLP12, Des09b, MS96].

9 But the standard’s words do not stop clever coders from creating their own home-brew
locking primitives from atomic operations.

7.5. LOCKING: HERO OR VILLAIN? 179

This strategy should be enforced with occasional manual or (preferably) automated
inspections of callbacks and signal handlers. When carrying out these inspections, be
wary of clever coders who might have (unwisely) created home-brew locks from atomic
operations.

7.5.2.3 Caller Controls Synchronization

Let the caller control synchronization. This works extremely well when the library
functions are operating on independent caller-visible instances of a data structure, each
of which may be synchronized separately. For example, if the library functions operate
on a search tree, and if the application needs a large number of independent search trees,
then the application can associate a lock with each tree. The application then acquires
and releases locks as needed, so that the library need not be aware of parallelism at all.
Instead, the application controls the parallelism, so that locking can work very well, as
was discussed in Section 7.5.1.

However, this strategy fails if the library implements a data structure that requires
internal concurrency, for example, a hash table or a parallel sort. In this case, the library
absolutely must control its own synchronization.

7.5.2.4 Parameterize Library Synchronization

The idea here is to add arguments to the library’s API to specify which locks to acquire,
how to acquire and release them, or both. This strategy allows the application to take on
the global task of avoiding deadlock by specifying which locks to acquire (by passing in
pointers to the locks in question) and how to acquire them (by passing in pointers to lock
acquisition and release functions), but also allows a given library function to control its
own concurrency by deciding where the locks should be acquired and released.

In particular, this strategy allows the lock acquisition and release functions to block
signals as needed without the library code needing to be concerned with which signals
need to be blocked by which locks. The separation of concerns used by this strategy can
be quite effective, but in some cases the strategies laid out in the following sections can
work better.

That said, passing explicit pointers to locks to external APIs must be very carefully
considered, as discussed in Section 7.1.1.4. Although this practice is sometimes the
right thing to do, you should do yourself a favor by looking into alternative designs first.

7.5.2.5 Explicitly Avoid Callback Deadlocks

The basic rule behind this strategy was discussed in Section 7.1.1.2: “Release all locks
before invoking unknown code.” This is usually the best approach because it allows
the application to ignore the library’s locking hierarchy: the library remains a leaf or
isolated subtree of the application’s overall locking hierarchy.

In cases where it is not possible to release all locks before invoking unknown code,
the layered locking hierarchies described in Section 7.1.1.3 can work well. For example,
if the unknown code is a signal handler, this implies that the library function block
signals across all lock acquisitions, which can be complex and slow. Therefore, in
cases where signal handlers (probably unwisely) acquire locks, the strategies in the next
section may prove helpful.

180 CHAPTER 7. LOCKING

7.5.2.6 Explicitly Avoid Signal-Handler Deadlocks

Suppose that a given library function is known to acquire locks, but does not block
signals. Suppose further that it is necessary to invoke that function both from within
and outside of a signal handler, and that it is not permissible to modify this library
function. Of course, if no special action is taken, then if a signal arrives while that
library function is holding its lock, deadlock can occur when the signal handler invokes
that same library function, which in turn attempts to re-acquire that same lock.

Such deadlocks can be avoided as follows:

1. If the application invokes the library function from within a signal handler, then
that signal must be blocked every time that the library function is invoked from
outside of a signal handler.

2. If the application invokes the library function while holding a lock acquired within
a given signal handler, then that signal must be blocked every time that the library
function is called outside of a signal handler.

These rules can be enforced by using tools similar to the Linux kernel’s lockdep lock
dependency checker [CorO6a]. One of the great strengths of lockdep is that it is not
fooled by human intuition [Ros11].

7.5.2.7 Library Functions Used Between fork () and exec()

As noted earlier, if a thread executing a library function is holding a lock at the time that
some other thread invokes fork (), the fact that the parent’s memory is copied to create
the child means that this lock will be born held in the child’s context. The thread that
will release this lock is running in the parent, but not in the child, which means that the
child’s copy of this lock will never be released. Therefore, any attempt on the part of
the child to invoke that same library function will result in deadlock.

One approach to this problem would be to have the library function check to see if
the owner of the lock is still running, and if not, “breaking” the lock by re-initializing
and then acquiring it. However, this approach has a couple of vulnerabilities:

1. The data structures protected by that lock are likely to be in some intermediate
state, so that naively breaking the lock might result in arbitrary memory corruption.

2. If'the child creates additional threads, two threads might break the lock concurrently,
with the result that both threads believe they own the lock. This could again result
in arbitrary memory corruption.

The pthread_atfork() function is provided to help deal with these situations. The
idea is to register a triplet of functions, one to be called by the parent before the fork (),
one to be called by the parent after the fork (), and one to be called by the child after
the fork (). Appropriate cleanups can then be carried out at these three points.

Be warned, however, that coding of pthread_atfork() handlers is quite subtle in
general. The cases where pthread_atfork() works best are cases where the data
structure in question can simply be re-initialized by the child.

7.5. LOCKING: HERO OR VILLAIN? 181

7.5.2.8 Parallel Libraries: Discussion

Regardless of the strategy used, the description of the library’s API must include a clear
description of that strategy and how the caller should interact with that strategy. In short,
constructing parallel libraries using locking is possible, but not as easy as constructing
a parallel application.

7.5.3 Locking For Parallelizing Sequential Libraries: Villain!

With the advent of readily available low-cost multicore systems, a common task is
parallelizing an existing library that was designed with only single-threaded use in mind.
This all-too-common disregard for parallelism can result in a library API that is severely
flawed from a parallel-programming viewpoint. Candidate flaws include:

1. Implicit prohibition of partitioning.
2. Callback functions requiring locking.

3. Object-oriented spaghetti code.

These flaws and the consequences for locking are discussed in the following sections.

7.5.3.1 Partitioning Prohibited

Suppose that you were writing a single-threaded hash-table implementation. It is easy
and fast to maintain an exact count of the total number of items in the hash table, and
also easy and fast to return this exact count on each addition and deletion operation. So
why not?

One reason is that exact counters do not perform or scale well on multicore systems,
as was seen in Chapter 5. As a result, the parallelized implementation of the hash table
will not perform or scale well.

So what can be done about this? One approach is to return an approximate count,
using one of the algorithms from Chapter 5. Another approach is to drop the element
count altogether.

Either way, it will be necessary to inspect uses of the hash table to see why the
addition and deletion operations need the exact count. Here are a few possibilities:

1. Determining when to resize the hash table. In this case, an approximate count
should work quite well. It might also be useful to trigger the resizing operation
from the length of the longest chain, which can be computed and maintained in a
nicely partitioned per-chain manner.

2. Producing an estimate of the time required to traverse the entire hash table. An
approximate count works well in this case, also.

3. For diagnostic purposes, for example, to check for items being lost when transferring
them to and from the hash table. This clearly requires an exact count. However,
given that this usage is diagnostic in nature, it might suffice to maintain the lengths
of the hash chains, then to infrequently sum them up while locking out addition
and deletion operations.

182 CHAPTER 7. LOCKING

It turns out that there is now a strong theoretical basis for some of the constraints that
performance and scalability place on a parallel library’s APIs [AGH* 11a, AGH* 11D,
McK11b]. Anyone designing a parallel library needs to pay close attention to those
constraints.

Although it is all too easy to blame locking for what are really problems due to a
concurrency-unfriendly API, doing so is not helpful. On the other hand, one has little
choice but to sympathize with the hapless developer who made this choice in (say)
1985. It would have been a rare and courageous developer to anticipate the need for
parallelism at that time, and it would have required an even more rare combination of
brilliance and luck to actually arrive at a good parallel-friendly API.

Times change, and code must change with them. That said, there might be a huge
number of users of a popular library, in which case an incompatible change to the API
would be quite foolish. Adding a parallel-friendly API to complement the existing
heavily used sequential-only API is probably the best course of action in this situation.

Nevertheless, human nature being what it is, we can expect our hapless developer
to be more likely to complain about locking than about his or her own poor (though
understandable) API design choices.

7.5.3.2 Deadlock-Prone Callbacks

Sections 7.1.1.2, 7.1.1.3, and 7.5.2 described how undisciplined use of callbacks can
result in locking woes. These sections also described how to design your library function
to avoid these problems, but it is unrealistic to expect a 1990s programmer with no
experience in parallel programming to have followed such a design. Therefore, someone
attempting to parallelize an existing callback-heavy single-threaded library will likely
have many opportunities to curse locking’s villainy.

If there are a very large number of uses of a callback-heavy library, it may be wise to
again add a parallel-friendly API to the library in order to allow existing users to convert
their code incrementally. Alternatively, some advocate use of transactional memory in
these cases. While the jury is still out on transactional memory, Section 17.2 discusses
its strengths and weaknesses. It is important to note that hardware transactional memory
(discussed in Section 17.3) cannot help here unless the hardware transactional memory
implementation provides forward-progress guarantees, which few do. Other alternatives
that appear to be quite practical (if less heavily hyped) include the methods discussed in
Sections 7.1.1.5, and 7.1.1.6, as well as those that will be discussed in Chapters 8 and 9.

7.5.3.3 Object-Oriented Spaghetti Code

Object-oriented programming went mainstream sometime in the 1980s or 1990s, and
as a result there is a huge amount of object-oriented code in production, much of it
single-threaded. Although object orientation can be a valuable software technique,
undisciplined use of objects can easily result in object-oriented spaghetti code. In
object-oriented spaghetti code, control flits from object to object in an essentially
random manner, making the code hard to understand and even harder, and perhaps
impossible, to accommodate a locking hierarchy.

Although many might argue that such code should be cleaned up in any case, such
things are much easier to say than to do. If you are tasked with parallelizing such a beast,
you can reduce the number of opportunities to curse locking by using the techniques
described in Sections 7.1.1.5, and 7.1.1.6, as well as those that will be discussed in
Chapters 8 and 9. This situation appears to be the use case that inspired transactional

7.6. SUMMARY 183

memory, so it might be worth a try as well. That said, the choice of synchronization
mechanism should be made in light of the hardware habits discussed in Chapter 3. After
all, if the overhead of the synchronization mechanism is orders of magnitude more than
that of the operations being protected, the results are not going to be pretty.

And that leads to a question well worth asking in these situations: Should the code
remain sequential? For example, perhaps parallelism should be introduced at the process
level rather than the thread level. In general, if a task is proving extremely hard, it is
worth some time spent thinking about not only alternative ways to accomplish that
particular task, but also alternative tasks that might better solve the problem at hand.

7.6 Summary

Achievement unlocked.

Unknown

Locking is perhaps the most widely used and most generally useful synchronization
tool. However, it works best when designed into an application or library from the
beginning. Given the large quantity of pre-existing single-threaded code that might
need to one day run in parallel, locking should therefore not be the only tool in your
parallel-programming toolbox. The next few chapters will discuss other tools, and how
they can best be used in concert with locking and with each other.

184 CHAPTER 7. LOCKING

It is mine, I tell you. My own. My precious. Yes, my
precious.

Gollum in “The Fellowship of the Ring”,
J.R.R. Tolkien

Chapter 8

Data Ownership

One of the simplest ways to avoid the synchronization overhead that comes with locking
is to parcel the data out among the threads (or, in the case of kernels, CPUs) so that a
given piece of data is accessed and modified by only one of the threads. Interestingly
enough, data ownership covers each of the “big three” parallel design techniques: It
partitions over threads (or CPUs, as the case may be), it batches all local operations, and
its elimination of synchronization operations is weakening carried to its logical extreme.
It should therefore be no surprise that data ownership is used extremely heavily, in fact,
it is one usage pattern that even novices use almost instinctively. In fact, it is used so
heavily that this chapter will not introduce any new examples, but will instead reference
examples from previous chapters.

Quick Quiz 8.1: What form of data ownership is extremely difficult to avoid when creating
shared-memory parallel programs (for example, using pthreads) in C or C++? H

There are a number of approaches to data ownership. Section 8.1 presents the
logical extreme in data ownership, where each thread has its own private address space.
Section 8.2 looks at the opposite extreme, where the data is shared, but different threads
own different access rights to the data. Section 8.3 describes function shipping, which
is a way of allowing other threads to have indirect access to data owned by a particular
thread. Section 8.4 describes how designated threads can be assigned ownership of a
specified function and the related data. Section 8.5 discusses improving performance
by transforming algorithms with shared data to instead use data ownership. Finally,
Section 8.6 lists a few software environments that feature data ownership as a first-class
citizen.

8.1 Multiple Processes

A man’s home is his castle

Ancient Laws of England

Section 4.1 introduced the following example:

1| compute_it 1 > compute_it.l.out &
2 | compute_it 2 > compute_it.2.out &
3| wait

185

186 CHAPTER 8. DATA OWNERSHIP

4| cat compute_it.1l.out
5| cat compute_it.2.out

This example runs two instances of the compute_it program in parallel, as separate
processes that do not share memory. Therefore, all data in a given process is owned by that
process, so that almost the entirety of data in the above example is owned. This approach
almost entirely eliminates synchronization overhead. The resulting combination of
extreme simplicity and optimal performance is obviously quite attractive.

[Quick Quiz 8.2: What synchronization remains in the example shown in Section 8.1? Wl]

[Quick Quiz 8.3: Is there any shared data in the example shown in Section 8.1? H J

This same pattern can be written in C as well as in sh, as illustrated by Listings 4.1
and 4.2.

It bears repeating that these trivial forms of parallelism are not in any way cheating
or ducking responsibility, but are rather simple and elegant ways to make your code
run faster. It is fast, scales well, is easy to program, easy to maintain, and gets the job
done. In addition, taking this approach (where applicable) allows the developer more
time to focus on other things whether these things might involve applying sophisticated
single-threaded optimizations to compute_it on the one hand, or applying sophisticated
parallel-programming patterns to portions of the code where this approach is inapplicable.
What is not to like?

The next section discusses the use of data ownership in shared-memory parallel
programs.

8.2 Partial Data Ownership and pthreads

Give thy mind more to what thou hast than to what
thou hast not.

Marcus Aurelius Antoninus

Chapter 5 makes heavy use of data ownership, but adds a twist. Threads are not allowed
to modify data owned by other threads, but they are permitted to read it. In short, the
use of shared memory allows more nuanced notions of ownership and access rights.

For example, consider the per-thread statistical counter implementation shown in
Listing 5.5 on page 81. Here, inc_count () updates only the corresponding thread’s
instance of counter, while read_count () accesses, but does not modify, all threads’
instances of counter.

Quick Quiz 8.4: Does it ever make sense to have partial data ownership where each thread
reads only its own instance of a per-thread variable, but writes to other threads’ instances? H

Partial data ownership is also common within the Linux kernel. For example, a given
CPU might be permitted to read a given set of its own per-CPU variables only with
interrupts disabled, another CPU might be permitted to read that same set of the first
CPU’s per-CPU variables only when holding the corresponding per-CPU lock. Then
that given CPU would be permitted to update this set of its own per-CPU variables if
it both has interrupts disabled and holds its per-CPU lock. This arrangement can be

8.3. FUNCTION SHIPPING 187

thought of as a reader-writer lock that allows each CPU very low-overhead access to its
own set of per-CPU variables. There are a great many variations on this theme.

For its own part, pure data ownership is also both common and useful, for example,
the per-thread memory-allocator caches discussed in Section 6.4.3 starting on page 136.
In this algorithm, each thread’s cache is completely private to that thread.

8.3 Function Shipping

If the mountain will not come to Muhammad, then
Muhammad must go to the mountain.

Essays, Francis Bacon

The previous section described a weak form of data ownership where threads reached
out to other threads’ data. This can be thought of as bringing the data to the functions
that need it. An alternative approach is to send the functions to the data.

Such an approach is illustrated in Section 5.4.3 beginning on page 97, in particular the
flush_local_count_sig() and flush_local_count () functions in Listing 5.18
on page 100.

The flush_local_count_sig() function is a signal handler that acts as the shipped
function. The pthread_kill () functioninflush_local_count () sends the signal—
shipping the function—and then waits until the shipped function executes. This shipped
function has the not-unusual added complication of needing to interact with any
concurrently executing add_count () or sub_count () functions (see Listing 5.19 on
page 101 and Listing 5.20 on page 102).

Quick Quiz 8.5: What mechanisms other than POSIX signals may be used for function
shipping? W

8.4 Designated Thread

Let a man practice the profession which he best
knows.

Cicero

The earlier sections describe ways of allowing each thread to keep its own copy or its
own portion of the data. In contrast, this section describes a functional-decomposition
approach, where a special designated thread owns the rights to the data that is required to
do its job. The eventually consistent counter implementation described in Section 5.2.3
provides an example. This implementation has a designated thread that runs the
eventual () function shown on lines 17-34 of Listing 5.4. This eventual () thread
periodically pulls the per-thread counts into the global counter, so that accesses to the
global counter will, as the name says, eventually converge on the actual value.

Quick Quiz 8.6: But none of the data in the eventual () function shown on lines 17-34
of Listing 5.4 is actually owned by the eventual () thread! In just what way is this data
ownership??? W

188 CHAPTER 8. DATA OWNERSHIP

8.5 Privatization

There is, of course, a difference between what a man
seizes and what he really possesses.

Pearl S. Buck

One way of improving the performance and scalability of a shared-memory parallel
program is to transform it so as to convert shared data to private data that is owned by a
particular thread.

An excellent example of this is shown in the answer to one of the Quick Quizzes in
Section 6.1.1, which uses privatization to produce a solution to the Dining Philosophers
problem with much better performance and scalability than that of the standard textbook
solution. The original problem has five philosophers sitting around the table with one
fork between each adjacent pair of philosophers, which permits at most two philosophers
to eat concurrently.

We can trivially privatize this problem by providing an additional five forks, so
that each philosopher has his or her own private pair of forks. This allows all five
philosophers to eat concurrently, and also offers a considerable reduction in the spread
of certain types of disease.

In other cases, privatization imposes costs. For example, consider the simple limit
counter shown in Listing 5.7 on page 86. This is an example of an algorithm where
threads can read each others’ data, but are only permitted to update their own data.
A quick review of the algorithm shows that the only cross-thread accesses are in
the summation loop in read_count (). If this loop is eliminated, we move to the
more-efficient pure data ownership, but at the cost of a less-accurate result from
read_count ().

Quick Quiz 8.7: Is it possible to obtain greater accuracy while still maintaining full privacy
of the per-thread data? W

Partial privatization is also possible, with some synchronization requirements, but
less than in the fully shared case. Some partial-privatization possibilities were explored
in Section 4.3.4.4.

In short, privatization is a powerful tool in the parallel programmer’s toolbox, but it
must nevertheless be used with care. Just like every other synchronization primitive, it
has the potential to increase complexity while decreasing performance and scalability.

8.6 Other Uses of Data Ownership

Everything comes to us that belongs to us if we
create the capacity to receive it.

Rabindranath Tagore

Data ownership works best when the data can be partitioned so that there is little or no
need for cross thread access or update. Fortunately, this situation is reasonably common,
and in a wide variety of parallel-programming environments.

Examples of data ownership include:

1. All message-passing environments, such as MPI [MPI0O8] and BOINC [UniO8a].

8.6. OTHER USES OF DATA OWNERSHIP 189

2. Map-reduce [Jac08].

e

Client-server systems, including RPC, web services, and pretty much any system
with a back-end database server.

Shared-nothing database systems.
Fork-join systems with separate per-process address spaces.

Process-based parallelism, such as the Erlang language.

A

Private variables, for example, C-language on-stack auto variables, in threaded
environments.

8. Many parallel linear-algebra algorithms, especially those well-suited for GPGPUs.!

9. Operating-system kernels adapted for networking, where each connection (also
called flow [DKS89, Zha89, McK90]) is assigned to a specific thread. One recent
example of this approach is the IX operating system [BPP*16]. IX does have some
shared data structures, which use synchronization mechanisms to be described in
Section 9.5.

Data ownership is perhaps the most underappreciated synchronization mechanism
in existence. When used properly, it delivers unrivaled simplicity, performance, and
scalability. Perhaps its simplicity costs it the respect that it deserves. Hopefully a greater
appreciation for the subtlety and power of data ownership will lead to greater level of
respect, to say nothing of leading to greater performance and scalability coupled with
reduced complexity.

! But note that a great many other classes of applications have also been ported to
GPGPUs [Mat13, AMD20, NVil7a, NVil7b].

190 CHAPTER 8. DATA OWNERSHIP

All things come to those who wait.

Violet Fane

Chapter 9

Deferred Processing

The strategy of deferring work goes back before the dawn of recorded history. It
has occasionally been derided as procrastination or even as sheer laziness. However,
in the last few decades workers have recognized this strategy’s value in simplifying
and streamlining parallel algorithms [KL80, Mas92]. Believe it or not, “laziness”
in parallel programming often outperforms and out-scales industriousness! These
performance and scalability benefits stem from the fact that deferring work often enables
weakening of synchronization primitives, thereby reducing synchronization overhead.
General approaches of work deferral include reference counting (Section 9.2), hazard
pointers (Section 9.3), sequence locking (Section 9.4), and RCU (Section 9.5). Finally,
Section 9.6 describes how to choose among the work-deferral schemes covered in this
chapter and Section 9.7 discusses the role of updates. But first we will introduce an
example algorithm that will be used to compare and contrast these approaches.

9.1 Running Example

An ounce of application is worth a ton of abstraction.

Booker T. Washington

This chapter will use a simplified packet-routing algorithm to demonstrate the value of
these approaches and to allow them to be compared. Routing algorithms are used in
operating-system kernels to deliver each outgoing TCP/IP packets to the appropriate
network interface. This particular algorithm is a simplified version of the classic 1980s
packet-train-optimized algorithm used in BSD UNIX [Jac88], consisting of a simple
linked list.! Modern routing algorithms use more complex data structures, however, as
in Chapter 5, a simple algorithm will help highlight issues specific to parallelism in an
easy-to-understand setting.

We further simplify the algorithm by reducing the search key from a quadruple
consisting of source and destination IP addresses and ports all the way down to a simple
integer. The value looked up and returned will also be a simple integer, so that the data
structure is as shown in Figure 9.1, which directs packets with address 42 to interface 1,
address 56 to interface 3, and address 17 to interface 7. Assuming that external packet

U In other words, this is not OpenBSD, NetBSD, or even FreeBSD, but none other than
Pre-BSD.

191

192 CHAPTER 9. DEFERRED PROCESSING

route_list

!

->addr=42 —>addr=56 —->addr=17

— ...

->iface=1 ->iface=3 —>iface=7

Figure 9.1: Pre-BSD Packet Routing List

network is stable, this list will be searched frequently and updated rarely. In Chapter 3
we learned that the best ways to evade inconvenient laws of physics, such as the finite
speed of light and the atomic nature of matter, is to either partition the data or to rely on
read-mostly sharing. In this chapter, we will use this Pre-BSD packet routing list to
evaluate a number of read-mostly synchronization techniques.

Listing 9.1 (route_seq. c) shows a simple single-threaded implementation corre-
sponding to Figure 9.1. Lines 1-5 define a route_entry structure and line 6 defines
the route_list header. Lines 8-20 define route_lookup(), which sequentially
searches route_list, returning the corresponding ->iface, or ULONG_MAX if there is
no such route entry. Lines 22-33 define route_add (), which allocates a route_entry
structure, initializes it, and adds it to the list, returning ~ENOMEM in case of memory-
allocation failure. Finally, lines 3547 define route_del (), which removes and frees
the specified route_entry structure if it exists, or returns ~ENOENT otherwise.

This single-threaded implementation serves as a prototype for the various concurrent
implementations in this chapter, and also as an estimate of ideal scalability and
performance.

9.2 Reference Counting

I am never letting you go!

Unknown

Reference counting tracks the number of references to a given object in order to prevent
that object from being prematurely freed. As such, it has a long and honorable history
of use dating back to at least the early 1960s [Wei63].> Reference counting is thus an
excellent candidate for a concurrent implementation of Pre-BSD routing.

To that end, Listing 9.2 shows data structures and the route_lookup() function
and Listing 9.3 shows the route_add () and route_del () functions (all at route_
refcnt.c). Since these algorithms are quite similar to the sequential algorithm shown
in Listing 9.1, only the differences will be discussed.

2 Weizenbaum discusses reference counting as if it was already well-known, so it
likely dates back to the 1950s and perhaps even to the 1940s. And perhaps even further.
People repairing and maintaining large dangerous machines have long used a mechanical
reference-counting technique implemented via padlocks. Before entering the machine, each
worker locks a padlock onto the machine’s on/off switch, thus preventing the machine from
being powered on while that worker is inside.

9.2. REFERENCE COUNTING 193

Listing 9.1: Sequential Pre-BSD Routing Table

struct route_entry {

1

2 struct cds_list_head re_next;

3 unsigned long addr;

4 unsigned long iface;

5}

6 CDS_LIST_HEAD(route_list);

7

8 unsigned long route_lookup(unsigned long addr)

9 {

10 struct route_entry *rep;

11 unsigned long ret;

12

13 cds_list_for_each_entry(rep, &route_list, re_next) {
14 if (rep->addr == addr) {

15 ret = rep->iface;

16 return ret;

17 ¥

18 }

19 return ULONG_MAX;

20 }

21

22 int route_add(unsigned long addr, unsigned long interface)
23 {

24 struct route_entry *rep;

25

26 rep = malloc(sizeof (*rep));

27 if (!rep)

28 return -ENOMEM;

29 rep->addr = addr;

30 rep->iface = interface;

31 cds_list_add(&rep->re_next, &route_list);
32 return O;

33}

34

35 int route_del(unsigned long addr)

36 {

37 struct route_entry *rep;

38

39 cds_list_for_each_entry(rep, &route_list, re_next) {
40 if (rep->addr == addr) {

41 cds_list_del(&rep->re_next);
4 free(rep);

43 return 0;

44 i

45 }

46 return -ENOENT;

47 }

Starting with Listing 9.2, line 2 adds the actual reference counter, line 6 adds
a ->re_freed use-after-free check field, line 9 adds the routelock that will be
used to synchronize concurrent updates, and lines 11-15 add re_free (), which sets
->re_freed, enabling route_lookup () to check for use-after-free bugs. In route_
lookup () itself, lines 29-30 release the reference count of the prior element and free
it if the count becomes zero, and lines 34—42 acquire a reference on the new element,
with lines 35 and 36 performing the use-after-free check.

[Quick Quiz 9.1: Why bother with a use-after-free check? WM]

In Listing 9.3, lines 11, 15, 24, 32, and 39 introduce locking to synchronize concurrent
updates. Line 13 initializes the ->re_freed use-after-free-check field, and finally
lines 33-34 invoke re_free () if the new value of the reference count is zero.

Quick Quiz 9.2: Why doesn’t route_del () in Listing 9.3 use reference counts to protect the
traversal to the element to be freed? M

194 CHAPTER 9. DEFERRED PROCESSING

Listing 9.2: Reference-Counted Pre-BSD Routing Table Lookup (BUGGY!!!)

I struct route_entry {

2 atomic_t re_refcnt;

3 struct route_entry *re_next;
4 unsigned long addr;

5 unsigned long iface;

6 int re_freed;

7
8
9

};
struct route_entry route_list;
DEFINE_SPINLOCK (routelock) ;
10
11 static void re_free(struct route_entry *rep)
2 {
13 WRITE_ONCE(rep->re_freed, 1);
14 free(rep);
15 }
16
17 unsigned long route_lookup(unsigned long addr)
18 {
19 int old;
20 int new;
21 struct route_entry *rep;
2 struct route_entry x*repp;
23 unsigned long ret;
24
25 retry:
26 repp = &route_list.re_next;
27 rep = NULL;
28 do {
29 if (rep && atomic_dec_and_test(&rep->re_refcnt))
30 re_free(rep);
31 rep = READ_ONCE (*repp) ;
32 if (rep == NULL)
33 return ULONG_MAX;
34 do {
35 if (READ_ONCE(rep->re_freed))
36 abort();
37 old = atomic_read(&rep->re_refcnt);
38 if (old <= 0)
39 goto retry;
40 new = old + 1;
41 } while (atomic_cmpxchg(&rep->re_refcnt,
42 old, new) != 0ld);
43 repp = &rep->re_next;
44 } while (rep->addr != addr);
45 ret = rep->iface;
46 if (atomic_dec_and_test(&rep->re_refcnt))
47 re_free(rep);
48 return ret;

49 }

9.2. REFERENCE COUNTING 195

Listing 9.3: Reference-Counted Pre-BSD Routing Table Add/Delete (BUGGY!!!)

I int route_add(unsigned long addr, unsigned long interface)
2 {

3 struct route_entry *rep;

4

5 rep = malloc(sizeof (*rep));

6 if (!rep)

7 return -ENOMEM;

8 atomic_set (&rep->re_refcnt, 1);

9 rep->addr = addr;

10 rep->iface = interface;

11 spin_lock(&routelock) ;

12 rep->re_next = route_list.re_next;

13 rep->re_freed = 0;

14 route_list.re_next = rep;

15 spin_unlock(&routelock);

16 return O;

17}

18

19 int route_del(unsigned long addr)

20 {

21 struct route_entry *rep;

22 struct route_entry **repp;

23

24 spin_lock(&routelock) ;

25 repp = &route_list.re_next;

26 for (5;) {

27 rep = *repp;

28 if (rep == NULL)

29 break;

30 if (rep->addr == addr) {

31 *repp = rep->re_next;
32 spin_unlock(&routelock) ;
33 if (atomic_dec_and_test(&rep->re_refcnt))
34 re_free(rep);
35 return 0;

36 3

37 repp = &rep->re_next;

38 }

39 spin_unlock(&routelock);

40 return -ENOENT;

196 CHAPTER 9. DEFERRED PROCESSING

2.5x107

2x107

1.5x107

1x107

Lookups per Millisecond

5x10°

0
0 50 100 150200250 300 350 400 450
Number of CPUs (Threads)

Figure 9.2: Pre-BSD Routing Table Protected by Reference Counting

Figure 9.2 shows the performance and scalability of reference counting on a read-
only workload with a ten-element list running on an eight-socket 28-core-per-socket
hyperthreaded 2.1 GHz x86 system with a total of 448 hardware threads (hps.2019.
12.02a/1scpu.hps). The “ideal” trace was generated by running the sequential code
shown in Listing 9.1, which works only because this is a read-only workload. The
reference-counting performance is abysmal and its scalability even more so, with the
“refcnt” trace indistinguishable from the x-axis. This should be no surprise in view of
Chapter 3: The reference-count acquisitions and releases have added frequent shared-
memory writes to an otherwise read-only workload, thus incurring severe retribution
from the laws of physics. As well it should, given that all the wishful thinking in the
world is not going to increase the speed of light or decrease the size of the atoms used
in modern digital electronics.

Quick Quiz 9.3: Why the break in the “ideal” line at 224 CPUs in Figure 9.2? Shouldn’t it be
a straight line? W

Quick Quiz 9.4: Shouldn’t the refent trace in Figure 9.2 be at least a little bit off of the
x-axis??? W

But it gets worse.

Running multiple updater threads repeatedly invoking route_add() and route_
del () will quickly encounter the abort () statement on line 36 of Listing 9.2, which
indicates a use-after-free bug. This in turn means that the reference counts are not only
profoundly degrading scalability and performance, but also failing to provide the needed
protection.

One sequence of events leading to the use-after-free bug is as follows, given the list
shown in Figure 9.1:

1. Thread A looks up address 42, reaching line 32 of route_lookup () in Listing 9.2.
In other words, Thread A has a pointer to the first element, but has not yet acquired
a reference to it.

2. Thread B invokes route_del() in Listing 9.3 to delete the route entry for
address 42. It completes successfully, and because this entry’s ->re_refcnt field
was equal to the value one, it invokes re_free () to set the ->re_freed field and
to free the entry.

9.3. HAZARD POINTERS 197

3. Thread A continues execution of route_lookup (). Its rep pointer is non-NULL,
but line 35 sees that its —>re_freed field is non-zero, so line 36 invokes abort ().

The problem is that the reference count is located in the object to be protected, but
that means that there is no protection during the instant in time when the reference
count itself is being acquired! This is the reference-counting counterpart of a locking
issue noted by Gamsa et al. [GKAS99]. One could imagine using a global lock or
reference count to protect the per-route-entry reference-count acquisition, but this
would result in severe contention issues. Although algorithms exist that allow safe
reference-count acquisition in a concurrent environment [Val95], they are not only
extremely complex and error-prone [MS95], but also provide terrible performance and
scalability [HMBWO7].

In short, concurrency has most definitely reduced the usefulness of reference counting!

Quick Quiz 9.5: If concurrency has “most definitely reduced the usefulness of reference
counting”, why are there so many reference counters in the Linux kernel? W

That said, sometimes it is necessary to look at a problem in an entirely different way
in order to successfully solve it. The next section describes what could be thought of as
an inside-out reference count that provides decent performance and scalability.

9.3 Hazard Pointers

If in doubt, turn it inside out.

Zara Carpenter

One way of avoiding problems with concurrent reference counting is to implement the
reference counters inside out, that is, rather than incrementing an integer stored in the
data element, instead store a pointer to that data element in per-CPU (or per-thread)
lists. Each element of these lists is called a hazard pointer [Mic04].> The value of a
given data element’s “virtual reference counter” can then be obtained by counting the
number of hazard pointers referencing that element. Therefore, if that element has been
rendered inaccessible to readers, and there are no longer any hazard pointers referencing
it, that element may safely be freed.

Of course, this means that hazard-pointer acquisition must be carried out quite carefully
in order to avoid destructive races with concurrent deletion. One implementation is
shown in Listing 9.4, which shows hp_try_record() on lines 1-16, hp_record ()
on lines 18-27, and hp_clear () on lines 29-33 (hazptr.h).

The hp_try_record() macro on line 16 is simply a casting wrapper for the _h_t_
r_impl () function, which attempts to store the pointer referenced by p into the hazard
pointer referenced by hp. If successful, it returns the value of the stored pointer. If it
fails due to that pointer being NULL, it returns NULL. Finally, if it fails due to racing
with an update, it returns a special HAZPTR_POISON token.

Quick Quiz 9.6: Given that papers on hazard pointers use the bottom bits of each pointer to
mark deleted elements, what is up with HAZPTR_POISON? M

Line 6 reads the pointer to the object to be protected. If line 8 finds that this pointer
was either NULL or the special HAZPTR_POISON deleted-object token, it returns the

3 Also independently invented by others [HLMO02].

198 CHAPTER 9. DEFERRED PROCESSING

Listing 9.4: Hazard-Pointer Recording and Clearing

static inline void *_h_t_r_impl(void **p,
hazard_pointer *hp)

1

2

3 {

4 void *tmp;

5

6 tmp = READ_ONCE(*p);

7 if ('tmp || tmp == (void *)HAZPTR_POISON)
8 return tmp;

9 WRITE_ONCE (hp->p, tmp);

10 smp_mb () ;

1 if (tmp == READ_ONCE(*p))

12 return tmp;

13 return (void *)HAZPTR_POISON;
14}

15

16 #define hp_try_record(p, hp) _h_t_r_impl((void *x)(p), hp)
17

18 static inline void *hp_record(void **p,

19 hazard_pointer *hp)
20 {

21 void *tmp;

2

23 do {

24 tmp = hp_try_record(*p, hp);

25 } while (tmp == (void *)HAZPTR_POISON);
26 return tmp;

27 }

28

29 static inline void hp_clear(hazard_pointer *hp)
30 {

31 smp_mb () ;

32 WRITE_ONCE (hp->p, NULL);

3}

pointer’s value to inform the caller of the failure. Otherwise, line 9 stores the pointer
into the specified hazard pointer, and line 10 forces full ordering of that store with the
reload of the original pointer on line 11. (See Chapter 15 for more information on
memory ordering.) If the value of the original pointer has not changed, then the hazard
pointer protects the pointed-to object, and in that case, line 12 returns a pointer to that
object, which also indicates success to the caller. Otherwise, if the pointer changed
between the two READ_ONCE () invocations, line 13 indicates failure.

Quick Quiz 9.7: Why does hp_try_record() in Listing 9.4 take a double indirection to the
data element? Why not void * instead of void **? H

The hp_record () function is quite straightforward: It repeatedly invokes hp_try_
record () until the return value is something other than HAZPTR_POISON.

Quick Quiz 9.8: Why bother with hp_try_record () ? Wouldn’t it be easier to just use the
failure-immune hp_record() function? M

The hp_clear () function is even more straightforward, with an smp_mb () to force
full ordering between the caller’s uses of the object protected by the hazard pointer and
the setting of the hazard pointer to NULL.

Once a hazard-pointer-protected object has been removed from its linked data
structure, so that it is now inaccessible to future hazard-pointer readers, it is passed to
hazptr_free_later(), which is shown on lines 48-56 of Listing 9.5 (hazptr.c).
Lines 50 and 51 enqueue the object on a per-thread list r1ist and line 52 counts the
object in rcount. If line 53 sees that a sufficiently large number of objects are now
queued, line 54 invokes hazptr_scan() to attempt to free some of them.

9.3. HAZARD POINTERS 199

Listing 9.5: Hazard-Pointer Scanning and Freeing

1
2
3
4
5
6
7
8
9

10
1
12
13
14
15
16
17
18
19
20
21
2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

i
{

[}

v
{

}

nt compare(const void *a, const void *b)

return (*(hazptr_head_t **)a - *(hazptr_head_t **)b);

oid hazptr_scan()

hazptr_head_t *cur;

int i;

hazptr_head_t *tmplist;
hazptr_head_t **plist = gplist;
unsigned long psize;

if (plist == NULL) {
psize = sizeof (hazptr_head_t *) * K * NR_THREADS;
plist = (hazptr_head_t **)malloc(psize);
BUG_ON(!plist);
gplist = plist;

}

smp_mb () ;

psize = 0;

for (i = 0; i < H; i++) {
uintptr_t hp = (uintptr_t)READ_ONCE(HP[i].p);

if (!'hp)
continue;
plist[psize++] = (hazptr_head_t *)(hp & ~O0x1UL);
}
smp_mb () ;
qsort(plist, psize, sizeof(hazptr_head_t *), compare);
tmplist = rlist;
rlist = NULL;
rcount = 0;
while (tmplist != NULL) {
cur = tmplist;
tmplist = tmplist->next;
if (bsearch(&cur, plist, psize,
sizeof (hazptr_head_t *), compare)) {
cur->next = rlist;
rlist = cur;
rcount++;
} else {
hazptr_free(cur);

}

48 void hazptr_free_later(hazptr_head_t *n)

49
50
51
52
53
54
55
56

{

}

n->next = rlist;

rlist = n;

rcount++;

if (rcount >= R) {
hazptr_scan() ;

}

200 CHAPTER 9. DEFERRED PROCESSING

Listing 9.6: Hazard-Pointer Pre-BSD Routing Table Lookup

I struct route_entry {

2 struct hazptr_head hh;

3 struct route_entry *re_next;
4 unsigned long addr;

5 unsigned long iface;
6
7
8

int re_freed;
};
struct route_entry route_list;
9 DEFINE_SPINLOCK(routelock);
10 hazard_pointer __thread *my_hazptr;
1
12 unsigned long route_lookup(unsigned long addr)

13 {

14 int offset = 0;

15 struct route_entry *rep;

16 struct route_entry **repp;

17

18 retry:

19 repp = &route_list.re_next;

20 do {

21 rep = hp_try_record(repp, &my_hazptr[offset]);
2 if (!rep)

23 return ULONG_MAX;

24 if ((uintptr_t)rep == HAZPTR_POISON)
25 goto retry;

26 repp = &rep->re_next;

27 } while (rep->addr != addr);

28 if (READ_ONCE(rep->re_freed))

29 abort();

30 return rep->iface;

31}

The hazptr_scan() function is shown on lines 646 of the listing. This function
relies on a fixed maximum number of threads (NR_THREADS) and a fixed maximum
number of hazard pointers per thread (K), which allows a fixed-size array of hazard
pointers to be used. Because any thread might need to scan the hazard pointers, each
thread maintains its own array, which is referenced by the per-thread variable gplist.
If line 14 determines that this thread has not yet allocated its gplist, lines 15-18
carry out the allocation. The memory barrier on line 20 ensures that all threads see the
removal of all objects by this thread before lines 22-28 scan all of the hazard pointers,
accumulating non-NULL pointers into the plist array and counting them in psize.
The memory barrier on line 29 ensures that the reads of the hazard pointers happen
before any objects are freed. Line 30 then sorts this array to enable use of binary search
below.

Lines 31 and 32 remove all elements from this thread’s list of to-be-freed objects,
placing them on the local tmplist and line 33 zeroes the count. Each pass through the
loop spanning lines 34—45 processes each of the to-be-freed objects. Lines 35 and 36
remove the first object from tmplist, and if lines 37 and 38 determine that there is a
hazard pointer protecting this object, lines 39—41 place it back onto rlist. Otherwise,
line 43 frees the object.

The Pre-BSD routing example can use hazard pointers as shown in Listing 9.6
for data structures and route_lookup(), and in Listing 9.7 for route_add () and
route_del() (route_hazptr.c). As with reference counting, the hazard-pointers
implementation is quite similar to the sequential algorithm shown in Listing 9.1 on
page 193, so only differences will be discussed.

Starting with Listing 9.6, line 2 shows the ->hh field used to queue objects pending
hazard-pointer free, line 6 shows the ->re_freed field used to detect use-after-free
bugs, and line 21 invokes hp_try_record () to attempt to acquire a hazard pointer. If

9.3. HAZARD POINTERS 201

the return value is NULL, line 23 returns a not-found indication to the caller. If the call
to hp_try_record() raced with deletion, line 25 branches back to line 18’s retry
to re-traverse the list from the beginning. The do—while loop falls through when the
desired element is located, but if this element has already been freed, line 29 terminates
the program. Otherwise, the element’s ->iface field is returned to the caller.

Note that line 21 invokes hp_try_record() rather than the easier-to-use hp_
record(), restarting the full search upon hp_try_record() failure. And such
restarting is absolutely required for correctness. To see this, consider a hazard-pointer-
protected linked list containing elements A, B, and C that is subjected to the following
sequence of events:

1. Thread O stores a hazard pointer to element B (having presumably traversed to
element B from element A).

2. Thread 1 removes element B from the list, which sets the pointer from element B
to element C to the special HAZPTR_POISON value in order to mark the deletion.
Because Thread 0 has a hazard pointer to element B, it cannot yet be freed.

3. Thread 1 removes element C from the list. Because there are no hazard pointers
referencing element C, it is immediately freed.

4. Thread 0 attempts to acquire a hazard pointer to now-removed element B’s successor,
but hp_try_record() returns the HAZPTR_POISON value, forcing the caller to
restart its traversal from the beginning of the list.

Which is a very good thing, because B’s successor is the now-freed element C, which
means that Thread 0’s subsequent accesses might have resulted in arbitrarily horrible
memory corruption, especially if the memory for element C had since been re-allocated
for some other purpose. Therefore, hazard-pointer readers must typically restart the
full traversal in the face of a concurrent deletion. Often the restart must go back to
some global (and thus immortal) pointer, but it is sometimes possible to restart at some
intermediate location if that location is guaranteed to still be live, for example, due to
the current thread holding a lock, a reference count, etc.

[Quick Quiz 9.9: Readers must “typically” restart? What are some exceptions? Wl]

Because algorithms using hazard pointers might be restarted at any step of their
traversal through the linked data structure, such algorithms must typically take care to
avoid making any changes to the data structure until after they have acquired all the
hazard pointers that are required for the update in question.

Quick Quiz 9.10: But don’t these restrictions on hazard pointers also apply to other forms of
reference counting? M

These hazard-pointer restrictions result in great benefits to readers, courtesy of the
fact that the hazard pointers are stored local to each CPU or thread, which in turn allows
traversals to be carried out without any writes to the data structures being traversed.
Referring back to Figure 5.8 on page 109, hazard pointers enable the CPU caches to
do resource replication, which in turn allows weakening of the parallel-access-control
mechanism, thus boosting performance and scalability.

Another advantage of restarting hazard pointers traversals is a reduction in minimal
memory footprint: Any object not currently referenced by some hazard pointer may
be immediately freed. In contrast, Section 9.5 will discuss a mechanism that avoids

202 CHAPTER 9. DEFERRED PROCESSING

Listing 9.7: Hazard-Pointer Pre-BSD Routing Table Add/Delete

I int route_add(unsigned long addr, unsigned long interface)
2 {

3 struct route_entry *rep;

4

5 rep = malloc(sizeof (*rep));

6 if (!'rep)

7 return -ENOMEM;

8 rep->addr = addr;

9 rep->iface = interface;

10 rep->re_freed = 0;

11 spin_lock(&routelock) ;

12 rep->re_next = route_list.re_next;

13 route_list.re_next = rep;

14 spin_unlock(&routelock) ;

15 return 0;

16}

17

18 int route_del(unsigned long addr)

19 {

20 struct route_entry *rep;

21 struct route_entry **repp;

22

23 spin_lock(&routelock) ;

24 repp = &route_list.re_next;

25 for (53) {

26 rep = *repp;

27 if (rep == NULL)

28 break;

29 if (rep->addr == addr) {

30 *repp = rep->re_next;

31 rep->re_next = (struct route_entry *)HAZPTR_POISON;
32 spin_unlock(&routelock);
33 hazptr_free_later(&rep->hh);
34 return 0;

35 }

36 repp = &rep->re_next;

37 }

38 spin_unlock(&routelock) ;

39 return -ENOENT;

40 X

read-side retries (and minimizes read-side overhead), but which can result in a much
larger memory footprint.

In Listing 9.7, line 10 initializes ->re_freed, line 31 poisons the ->re_next field of
the newly removed object, and line 33 passes that object to the hazptr_free_later ()
function, which will free that object once it is safe to do so. The spinlocks work the
same as in Listing 9.3.

Figure 9.3 shows the hazard-pointers-protected Pre-BSD routing algorithm’s perfor-
mance on the same read-only workload as for Figure 9.2. Although hazard pointers
scale far better than does reference counting, hazard pointers still require readers to
do writes to shared memory (albeit with much improved locality of reference), and
also require a full memory barrier and retry check for each object traversed. Therefore,
hazard-pointers performance is still far short of ideal. On the other hand, unlike naive
approaches to concurrent reference-counting, hazard pointers not only operate correctly
for workloads involving concurrent updates, but also exhibit excellent scalability. Addi-
tional performance comparisons with other mechanisms may be found in Chapter 10
and in other publications [HMBWO07, McK13, Mic04].

Quick Quiz 9.11: Figure 9.3 shows no sign of hyperthread-induced flattening at 224 threads.
Why is that? H

9.4. SEQUENCE LOCKS 203

2.5x107

2x107

1.5x107

1x107

Lookups per Millisecond

5x10°

0
0 50 100 150200250 300 350 400 450
Number of CPUs (Threads)

Figure 9.3: Pre-BSD Routing Table Protected by Hazard Pointers

Quick Quiz 9.12: The paper “Structured Deferral: Synchronization via Procrastina-
tion” [McK13] shows that hazard pointers have near-ideal performance. Whatever happened in
Figure 9.377? A

The next section attempts to improve on hazard pointers by using sequence locks,
which avoid both read-side writes and per-object memory barriers.

9.4 Sequence Locks

Il be just like starting over.

John Lennon

Sequence locks are used in the Linux kernel for read-mostly data that must be seen in
a consistent state by readers. However, unlike reader-writer locking, readers do not
exclude writers. Instead, like hazard pointers, sequence locks force readers to retry
an operation if they detect activity from a concurrent writer. As can be seen from
Figure 9.4, it is important to design code using sequence locks so that readers very
rarely need to retry.

Quick Quiz 9.13: Why isn’t this sequence-lock discussion in Chapter 7, you know, the one on
locking? W

Listing 9.8: Sequence-Locking Reader

1 do {

2 seq = read_segbegin(&test_seqlock);
3 /* read-side access. */

4 } while (read_seqretry(&test_seqlock, seq));

Listing 9.9: Sequence-Locking Writer

| write_seqlock(&test_seqlock) ;
2 /* Update */
3 write_sequnlock(&test_seqlock);

204 CHAPTER 9. DEFERRED PROCESSING

Ak, | finally got

done reading!

No, you didn't!
Start over!

Figure 9.4: Reader And Uncooperative Sequence Lock

The key component of sequence locking is the sequence number, which has an even
value in the absence of updaters and an odd value if there is an update in progress.
Readers can then snapshot the value before and after each access. If either snapshot has
an odd value, or if the two snapshots differ, there has been a concurrent update, and the
reader must discard the results of the access and then retry it. Readers therefore use
the read_seqgbegin() and read_seqretry () functions shown in Listing 9.8 when
accessing data protected by a sequence lock. Writers must increment the value before
and after each update, and only one writer is permitted at a given time. Writers therefore
use the write_seqlock () and write_sequnlock() functions shown in Listing 9.9
when updating data protected by a sequence lock.

As a result, sequence-lock-protected data can have an arbitrarily large number of
concurrent readers, but only one writer at a time. Sequence locking is used in the Linux
kernel to protect calibration quantities used for timekeeping. It is also used in pathname
traversal to detect concurrent rename operations.

A simple implementation of sequence locks is shown in Listing 9.10 (seqlock.h).
The seqlock_t data structure is shown on lines 1-4, and contains the sequence number
along with a lock to serialize writers. Lines 6—10 show seqlock_init (), which, as
the name indicates, initializes a seqlock_t.

Lines 12-19 show read_seqbegin(), which begins a sequence-lock read-side
critical section. Line 16 takes a snapshot of the sequence counter, and line 17 orders
this snapshot operation before the caller’s critical section. Finally, line 18 returns the
value of the snapshot (with the least-significant bit cleared), which the caller will pass
to a later call to read_seqretry().

Quick Quiz 9.14: Why not have read_segbegin() in Listing 9.10 check for the low-order
bit being set, and retry internally, rather than allowing a doomed read to start? W

Lines 21-29 show read_seqretry (), which returns true if there was at least one
writer since the time of the corresponding call to read_seqbegin (). Line 26 orders the
caller’s prior critical section before line 27’s fetch of the new snapshot of the sequence
counter. Finally, line 28 checks whether the sequence counter has changed, in other
words, whether there has been at least one writer, and returns true if so.

9.4. SEQUENCE LOCKS 205

Listing 9.10: Sequence-Locking Implementation

I typedef struct {

2 unsigned long seq;

3 spinlock_t lock;

4 } seqlock_t;

5

6 static inline void seqlock_init(seqlock_t *slp)
7 1{

8 slp->seq = 0;

9 spin_lock_init (&slp->lock);

10 }

11

12 static inline unsigned long read_segbegin(seqlock_t *slp)
13 {

14 unsigned long s;

15

16 s = READ_ONCE(slp->seq);

17 smp_mb () ;

18 return s & ~0x1UL;

19 }

20

21 static inline int read_seqretry(seqlock_t *slp,
2 unsigned long oldseq)
23 {

24 unsigned long s;

25

26 smp_mb () ;

27 s = READ_ONCE(slp->seq);

28 return s != oldseq;

29 }

30

31 static inline void write_seqlock(seqlock_t *slp)
2 {

33 spin_lock(&slp->lock);

34 ++slp—>seq;

35 smp_mb () ;

36 }

37

38 static inline void write_sequnlock(seqlock_t *slp)
39 {

40 smp_mb () ;

41 ++slp->seq;

2 spin_unlock(&slp->lock) ;

40}

[Quick Quiz 9.15: Why is the smp_mb() on line 26 of Listing 9.10 needed?]

[Quick Quiz 9.16: Can’t weaker memory barriers be used in the code in Listing 9.10? H J

[Quick Quiz 9.17: What prevents sequence-locking updaters from starving readers? W]

Lines 31-36 show write_seqlock(), which simply acquires the lock, increments
the sequence number, and executes a memory barrier to ensure that this increment is
ordered before the caller’s critical section. Lines 38—43 show write_sequnlock(),
which executes a memory barrier to ensure that the caller’s critical section is ordered
before the increment of the sequence number on line 41, then releases the lock.

[Quick Quiz 9.18: What if something else serializes writers, so that the lock is not needed? .J

Quick Quiz 9.19: Why isn’t seq on line 2 of Listing 9.10 unsigned rather than unsigned
long? After all, if unsigned is good enough for the Linux kernel, shouldn’t it be good enough
for everyone? M

206 CHAPTER 9. DEFERRED PROCESSING

Listing 9.11: Sequence-Locked Pre-BSD Routing Table Lookup (BUGGY!!!)

struct route_entry {

1

2 struct route_entry *re_next;
3 unsigned long addr;

4 unsigned long iface;

5 int re_freed;

6 F;

7 struct route_entry route_list;

8 DEFINE_SEQ_LOCK(sl);

9
10 unsigned long route_lookup(unsigned long addr)

n {

12 struct route_entry *rep;

13 struct route_entry **repp;

14 unsigned long ret;

15 unsigned long s;

16

17 retry:

18 s = read_segbegin(&sl);

19 repp = &route_list.re_next;

20 do {

21 rep = READ_ONCE (*repp) ;
2 if (rep == NULL) {

23 if (read_seqretry(&sl, s))
24 goto retry;
25 return ULONG_MAX;
26 }

27 repp = &rep->re_next;

28 } while (rep->addr != addr);

29 if (READ_ONCE(rep->re_freed))

30 abort();

31 ret = rep->iface;

32 if (read_seqretry(&sl, s))

33 goto retry;

34 return ret;

35)

So what happens when sequence locking is applied to the Pre-BSD routing table?
Listing 9.11 shows the data structures and route_lookup (), and Listing 9.12 shows
route_add() and route_del() (route_seqlock.c). This implementation is once
again similar to its counterparts in earlier sections, so only the differences will be
highlighted.

In Listing 9.11, line 5 adds —>re_freed, which is checked on lines 29 and 30. Line 8
adds a sequence lock, which is used by route_lookup () on lines 18, 23, and 32, with
lines 24 and 33 branching back to the retry label on line 17. The effect is to retry any
lookup that runs concurrently with an update.

In Listing 9.12, lines 11, 14, 23, 31, and 39 acquire and release the sequence lock,
while lines 10 and 33 handle ->re_freed. This implementation is therefore quite
straightforward.

It also performs better on the read-only workload, as can be seen in Figure 9.5, though
its performance is still far from ideal. Worse yet, it suffers use-after-free failures. The
problem is that the reader might encounter a segmentation violation due to accessing an
already-freed structure before read_seqretry () has a chance to warn of the concurrent
update.

Quick Quiz 9.20: Can this bug be fixed? In other words, can you use sequence locks as
the only synchronization mechanism protecting a linked list supporting concurrent addition,
deletion, and lookup? H

Both the read-side and write-side critical sections of a sequence lock can be thought
of as transactions, and sequence locking therefore can be thought of as a limited form

9.4. SEQUENCE LOCKS

207

Listing 9.12: Sequence-Locked Pre-BSD Routing Table Add/Delete (BUGGY!!!)

1
2
3
4
5
6
7
8
9

10
11
12
13

i
{

}

nt route_add(unsigned long addr, unsigned long interface)

struct route_entry *rep;

rep = malloc(sizeof (*rep));
if (!rep)

return -ENOMEM;
rep->addr = addr;
rep->iface = interface;
rep->re_freed = 0;
write_seqlock(&sl);
rep->re_next = route_list.re_next;
route_list.re_next = rep;
write_sequnlock(&sl);
return 0;

int route_del(unsigned long addr)

{

struct route_entry *rep;
struct route_entry **repp;

write_seqlock(&sl);
repp = &route_list.re_next;

for (55) {
Tep = *repp;
if (rep == NULL)

break;
if (rep->addr == addr) {
*repp = rep->re_next;
write_sequnlock(&sl);
smp_mb () ;
rep->re_freed = 1;
free(rep);
return 0;
3
repp = &rep->re_next;
}
write_sequnlock(&sl);
return -ENOENT;

208 CHAPTER 9. DEFERRED PROCESSING

2.5x107

2x107

1.5x107

1x107

Lookups per Millisecond

5x10°

0
0 50 100 150200250 300 350 400 450
Number of CPUs (Threads)

Figure 9.5: Pre-BSD Routing Table Protected by Sequence Locking

of transactional memory, which will be discussed in Section 17.2. The limitations of
sequence locking are: (1) Sequence locking restricts updates and (2) sequence locking
does not permit traversal of pointers to objects that might be freed by updaters. These
limitations are of course overcome by transactional memory, but can also be overcome
by combining other synchronization primitives with sequence locking.

Sequence locks allow writers to defer readers, but not vice versa. This can result in
unfairness and even starvation in writer-heavy workloads.* On the other hand, in the
absence of writers, sequence-lock readers are reasonably fast and scale linearly. It is only
human to want the best of both worlds: fast readers without the possibility of read-side
failure, let alone starvation. In addition, it would also be nice to overcome sequence
locking’s limitations with pointers. The following section presents a synchronization
mechanism with exactly these properties.

9.5 Read-Copy Update (RCU)

“Free” is a very good price!

Tom Peterson

All of the mechanisms discussed in the preceding sections used one of a number of
approaches to defer specific actions until they may be carried out safely. The reference
counters discussed in Section 9.2 use explicit counters to defer actions that could disturb
readers, which results in read-side contention and thus poor scalability. The hazard
pointers covered by Section 9.3 uses implicit counters in the guise of per-thread lists
of pointer. This avoids read-side contention, but requires readers to do stores and
conditional branches, as well as either full memory barriers in read-side primitives or
real-time-unfriendly inter-processor interrupts in update-side primitives.’ The sequence

4 Dmitry Vyukov describes one way to reduce (but, sadly, not eliminate) reader
starvation: http://www.1024cores.net/home/lock-free-algorithms/reader-
writer-problem/improved-lock-free-seqlock.

5 In some important special cases, this extra work can be avoided by using link counting
as exemplified by the UnboundedQueue and ConcurrentHashMap data structures implemented
in Folly open-source library (https://github.com/facebook/folly).

http://www.1024cores.net/home/lock-free-algorithms/reader-writer-problem/improved-lock-free-seqlock
http://www.1024cores.net/home/lock-free-algorithms/reader-writer-problem/improved-lock-free-seqlock
https://github.com/facebook/folly

9.5. READ-COPY UPDATE (RCU) 209

lock presented in Section 9.4 also avoids read-side contention, but does not protect
pointer traversals and, like hazard pointers, requires either full memory barriers in
read-side primitives, or inter-processor interrupts in update-side primitives. These
schemes’ shortcomings raise the question of whether it is possible to do better.

This section introduces read-copy update (RCU), which provides an API that allows
delays to be identified in the source code, rather than as expensive updates to shared data.
The remainder of this section examines RCU from a number of different perspectives.
Section 9.5.1 provides the classic introduction to RCU, Section 9.5.2 covers fundamental
RCU concepts, Section 9.5.3 presents the Linux-kernel API, Section 9.5.4 introduces
some common uses of RCU, Section 9.5.5 covers recent work related to RCU, and
finally Section 9.5.6 provides some RCU exercises.

9.5.1 Introduction to RCU

The approaches discussed in the preceding sections have provided some scalability
but decidedly non-ideal performance for the Pre-BSD routing table. Therefore, in the
spirit of “only those who have gone too far know how far you can go”,% we will go
all the way, looking into algorithms in which concurrent readers execute the same
sequence of assembly language instructions as would a single-threaded lookup, despite
the presence of concurrent updates. Of course, this laudable goal might raise serious

implementability questions, but we cannot possibly succeed if we don’t even try!

9.5.1.1 Minimal Insertion and Deletion

To minimize implementability concerns, we focus on a minimal data structure, which
consists of a single global pointer that is either NULL or references a single structure.
Interestingly enough, this simple data structure is used in production [RH18]. A classic
approach for insertion is shown in Figure 9.6, which shows four states with time
advancing from top to bottom. The first row shows the initial state, with gptr equal to
NULL. In the second row, we have allocated a structure which is uninitialized, as indicated
by the question marks. In the third row, we have initialized the structure. We might hope
to assign gptr to reference this new element using a simple C-language assignment
statement, resulting in the state shown in the fourth and final row. Unfortunately, a
quick review of Section 4.3.4.1 dashes these hopes. Therefore, the updater cannot use a
simple C-language assignment, but must instead use smp_store_release () as shown
in the figure, or, as will be seen, rcu_assign_pointer().

Similarly, one might hope that readers could use a single C-language assignment
statement to fetch the value of gptr, and be guaranteed to either get the old value of NULL
or to get the newly installed pointer, but either way see a valid result. Unfortunately,
Section 4.3.4.1 also dashes these hopes. To obtain this guarantee, readers must
instead use READ_ONCE(), or, as will be seen, rcu_dereference(). However, on
most modern computer systems, each of these two primitives can be implemented
with a single load instruction, exactly the instruction that would normally be used in
single-threaded code.

Therefore, it really is possible to add new data to linked data structures while allowing
concurrent readers to execute the same sequence of machine instructions that is normally
used in single-threaded code. This no-cost approach to concurrent reading provides
excellent performance and scalability, and also is eminently suitable for real-time use.

6 With apologies to T. S. Eliot.

210 CHAPTER 9. DEFERRED PROCESSING

(1) gptr
P
@ gptr

———

p
®) gptr
smp_store_release(&gptr, p);

" BpEr ->addr=42 ‘/p
________,.

->iface=1

Figure 9.6: Insertion With Concurrent Readers

Insertion is of course quite useful, but sooner or later, it will also be necessary to
delete data. As can be seen in Figure 9.7, the first step is easy. Again taking the lessons
from Section 4.3.4.1 to heart, smp_store_release() is used to NULL the pointer,7
thus moving from the first row to the second in the figure. At this point, pre-existing
readers see the old structure with —>addr of 42 and ->iface of 1, but new readers will
see a NULL pointer, that is, concurrent readers can disagree on the state, as indicated by
the “2 Versions” in the figure.

Quick Quiz 9.21: Why does Figure 9.7 use smp_store_release() given that it is storing a
NULL pointer? Wouldn’t WRITE_ONCE() work just as well in this case, given that there is no
structure initialization to order against the store of the NULL pointer? W

Quick Quiz 9.22: Readers running concurrently each other and with the procedure outlined
in Figure 9.7 can disagree on the value of gptr. Isn’t that just a wee bit problematic??? H

We get back to a single version simply by waiting for all the pre-existing readers to
complete, as shown in row 3. At that point, all the pre-existing readers are done, and
no later reader has a path to the old data item, so there can no longer be any readers
referencing it. It may therefore be safely freed, as shown on row 4.

Thus, given a way to wait for pre-existing readers to complete, it is possible to both
add data to and remove data from a linked data structure, despite the readers executing

7 Strictly speaking, WRITE_ONCE() suffices for a NULL pointer, but smp_store_
release() is absolutely required when storing non-NULL pointers. Or, as we will see,
rcu_assign_pointer().

Edition.2-rc3

9.5. READ-COPY UPDATE (RCU) 211

(1) gptr ->addr=42 / Readers?
L 3

->iface=1
1 Version
smp_store_release(&gptr, NULL);
tr ->addr=42 / Readers?
@ * ->iface=1 -
2 Versions
3 | optr addrsaz | — "OFR
@ ->iface=1)
1 Version
W
@ gptr 1 Version

Figure 9.7: Deletion With Concurrent Readers

the same sequence of machine instructions that would be appropriate for single-threaded
execution. So perhaps going all the way was not too far after all!

But how can we tell when all of the pre-existing readers have in fact completed? This
question is the topic of the next section.

9.5.1.2 Waiting for Readers

It is tempting to base reader waiting on reference counting, but Figure 5.1 in Chapter 5
shows that concurrent reference counting results in extreme overhead, as we already
saw in Section 9.2. Hazard pointers profoundly reduce this overhead, but, as we saw in
Section 9.3, not to zero.

A second approach observes that memory synchronization is expensive, and therefore
uses registers instead, namely each CPU’s or thread’s program counter (PC), thus
imposing no overhead on readers, at least in the absence of concurrent updates. The
updater polls each relevant PC, and if that PC is not within read-side code, then the
corresponding CPU or thread is within a quiescent state, in turn signaling the completion
of any reader that might have access to the newly removed data element. Once all
CPU’s or thread’s PCs have been observed to be outside of any reader, the grace
period has completed. Please note that this approach poses some serious challenges,
including memory ordering, functions that are sometimes invoked from readers, and
ever-exciting code-motion optimizations. Nevertheless, this approach is said to be used
in production [Ash15].

A third approach is to simply wait for a fixed period of time that is long enough to
comfortably exceed the lifetime of any reasonable reader [Jac93, Joh95]. This can work
quite well in hard real-time systems [RLPB18], but in less exotic settings, Murphy says

212 CHAPTER 9. DEFERRED PROCESSING

that it is critically important to be prepared even for unreasonably long-lived readers.
To see this, consider the consequences of failing to wait long enough: A data item
will be freed while the unreasonable reader is still referencing it, and that item might
well be immediately reallocated, possibly even as a data item of some other type. The
unreasonable reader and the unwitting reallocator would then be attempting to use
the same memory for two very different purposes. The ensuing mess will at best be
exceedingly difficult to debug.

A fourth approach is to wait forever, secure in the knowledge that doing so will
accommodate even the most unreasonable reader. This approach is also called “leaking
memory”, and has a bad reputation due to the fact that memory leaks often require
untimely and inconvenient reboots. However, reputation notwithstanding, this is a
viable strategy when the update rate and the uptime are both sharply bounded. For
example, this approach could work well in a high-availability cluster where systems were
periodically crashed in order to ensure that cluster really remained highly available.®
Leaking the memory is also a viable strategy in environments having garbage collectors,
in which case the garbage collector can be thought of as plugging the leak [KL8O0].
However, if your environment lacks a garbage collector, read on!

A fifth approach avoids the period crashes in favor of periodically “stopping the
world”, as exemplified by the traditional stop-the-world garbage collector. This approach
was also heavily used during the decades before ubiquitous connectivity, when it was
common practice to power systems off at the end of each working day. However, in
today’s always-connected always-on world, stopping the world can gravely degrade
response times, which has been one motivation for the development of concurrent
garbage collectors [BCRO3]. Furthermore, we only need all pre-existing readers to
complete, not to complete all at the same time.

This observation leads to the sixth approach, which is stopping one CPU or thread
at a time. This approach has the advantage of not degrading reader response times at
all, let alone gravely. Furthermore, numerous applications already have states (termed
quiescent states) that can be reached only after all pre-existing readers are done. In
transaction-processing systems, the time between a pair of successive transactions might
be a quiescent state. In reactive systems, the state between a pair of successive events
might be a quiescent state. Within non-preemptive operating-systems kernels, a context
switch can be a quiescent state [MS98a]. Either way, one all CPUs and/or threads have
passed through a quiescent state, the system is said to have completed a grace period, at
which point all readers in existence at the start of that grace period are guaranteed to
have completed. As a result, it is also guaranteed to be safe to free any removed data
items that were removed prior to the start of that grace period.’

Within a non-preemptive operating-system kernel, for context switch to be a valid
quiescent state, readers must be prohibited from blocking while referencing a given
instance data structure obtained via the gptr pointer shown in Figures 9.6 and 9.7. This
no-blocking constraint is consistent with similar constraints on pure spinlocks, where a
CPU is forbidden from blocking while holding a spinlock. Without this prohibition, all
CPUs might be consumed by threads spinning attempting to acquire a spinlock held
by a blocked thread. The spinning threads will not relinquish their CPUs until they
acquire the lock, but the thread holding the lock cannot possibly release it until one of

8 The program that forces the periodic crashing is sometimes known as a “chaos monkey”:
https://netflix.github.io/chaosmonkey/.

9 It is possible to do much more with RCU than simply defer reclamation of memory, but
deferred reclamation is RCU’s most common use case, and is therefore an excellent place to
start.

https://netflix.github.io/chaosmonkey/

9.5. READ-COPY UPDATE (RCU) 213

(gptr, NULL);

CPU1 CPU2 CPU 3

6 Context Switch

/

wait for readers
WRITE_ONCE

Grace Period /
~

Reader

N

free()

Figure 9.8: QSBR: Waiting for Pre-Existing Readers

the spinning threads relinquishes a CPU. This is a classic deadlock situation, and this
deadlock is avoided by prohibiting blocking while holding a spinlock.

Again, this same constraint is imposed on reader threads dereferencing gptr: such
threads are not allowed to block until after they are done using the pointed-to data
item. Returning to the second row of Figure 9.7, where the updater has just completed
executing the smp_store_release(), imagine that CPU 0 executes a context switch.
Because readers are not permitted to block while traversing the linked list, we are
guaranteed that all prior readers that might have been running on CPU 0 will have
completed. Extending this line of reasoning to the other CPUs, once each CPU has
been observed executing a context switch, we are guaranteed that all prior readers
have completed, and that there are no longer any reader threads referencing the newly
removed data element. The updater can then safely free that data element, resulting in
the state shown at the bottom of Figure 9.7.

This approach is termed quiescent state based reclamation (QSBR) [HMBO06]. A
QSBR schematic is shown in Figure 9.8, with time advancing from the top of the figure
to the bottom. CPU 1 does the WRITE_ONCE() that removes the current data item
(presumably having previously read the pointer value and availed itself of appropriate
synchronization), then waits for readers. This wait operation results in an immediate
context switch, which is a quiescent state, which in turn means that all prior reads on
CPU 1 have completed. Next, CPU 2 does a context switch, so that all readers on
CPUs 1 and 2 are now known to have completed. Finally, CPU 3 does a context switch.
At this point, all readers throughout the entire system are known to have completed, so
the grace period ends, permitting CPU 1 to free the old data item.

214 CHAPTER 9. DEFERRED PROCESSING

Listing 9.13: Insertion and Deletion With Concurrent Readers

struct route *gptr;

1

2

3 int access_route(int (*f)(struct route *rp))
4 {

5 int ret = -1;

6 struct route *rp;

4

8 rcu_read_lock();

9 rp = rcu_dereference(gptr);
10 if (rp)

11 ret = f(rp);

12 rcu_read_unlock();

13 return ret;

14}

15

16 struct route *ins_route(struct route *rp)
17 {

18 struct route *old_rp;

19

20 spin_lock(&route_lock) ;

21 old_rp = gptr;

22 rcu_assign_pointer(gptr, rp);
23 spin_unlock(&route_lock);

24 return old_rp;

25}

26

27 int del_route(void)

28 {

29 struct route *old_rp;

30

31 spin_lock(&route_lock) ;

32 old_rp = gptr;

33 RCU_INIT_POINTER(gptr, NULL);
34 spin_unlock(&route_lock) ;

35 synchronize_rcu();

36 free(old_rp);

37 return !!old_rp;

38 }

Quick Quiz 9.23: In Figure 9.8, the last of CPU 3’s readers that could possibly have access to
the old data item ended before the grace period even started! So why would any anyone bother
waiting until CPU 3’s later context switch??? H

9.5.1.3 Toy Implementation

Although production-quality QSBR implementations can be quite complex, a toy
non-preemptive Linux-kernel implementation is exceedingly simple:

1 | void synchronize_rcu(void)

2| {

3 int cpu;

4

5 for_each_online_cpu(cpu)

6 sched_setaffinity(current->pid, cpumask_of (cpu));
71}

The for_each_online_cpu() primitive iterates over all CPUs, and the sched_
setaffinity () function causes the current thread to execute on the specified CPU,
which forces the destination CPU to execute a context switch. Therefore, once the
for_each_online_cpu() has completed, each CPU has executed a context switch,
which in turn guarantees that all pre-existing reader threads have completed.

9.5. READ-COPY UPDATE (RCU) 215

Please note that this approach is not production quality. Correct handling of a
number of corner cases and the need for a number of powerful optimizations mean that
production-quality implementations are quite complex. In addition, RCU implementa-
tions for preemptible environments require that readers actually do something, which
in non-real-time Linux-kernel environments can be as simple as defining rcu_read_
lock() and rcu_read_unlock() as preempt_disable() and preempt_enable(),
respectively.'? However, this simple non-preemptible approach is conceptually complete,
and demonstrates that it really is possible to provide read-side synchronization at zero
cost, even in the face of concurrent updates. In fact, Listing 9.13 shows how reading
(access_route()), Figure 9.6’s insertion (ins_route ()) and Figure 9.7’s deletion
(del_route()) can be implemented. (A slightly more capable routing table is shown
in Section 9.5.4.1.)

Quick Quiz 9.24: What is the point of rcu_read_lock() and rcu_read_unlock() in
Listing 9.13? Why not just let the quiescent states speak for themselves? H

Quick Quiz 9.25: What is the point of rcu_dereference(), rcu_assign_pointer()
and RCU_INIT_POINTER() in Listing 9.13? Why not just use READ_ONCE(), smp_store_
release(), and WRITE_ONCE(), respectively? H

Referring back to Listing 9.13, note that route_lock is used to synchronize between
concurrent updaters invoking ins_route () and del_route (). However, this lock is
not acquired by readers invoking access_route (): Readers are instead protected by
the QSBR techniques described in this section.

Note that ins_route () simply returns the old value of gptr, which Figure 9.6
assumed would always be NULL. This means that it is the caller’s responsibility to figure
out what to do with a non-NULL value, a task complicated by the fact that readers might
still be referencing it for an indeterminate period of time. Callers might use one of the
following approaches:

1. Use synchronize_rcu() to safely free the pointed-to structure. Although this
approach is correct from an RCU perspective, it arguably has software-engineering
leaky-API problems.

2. Trip an assertion if the returned pointer is non-NULL.

3. Pass the returned pointer to a later invocation of ins_route () to restore the earlier
value.

In contrast, del_route () uses synchronize_rcu() and free () to safely free the
newly deleted data item.

Quick Quiz 9.26: But what if the old structure needs to be freed, but the caller of ins_
route () cannot block, perhaps due to performance considerations or perhaps because the
caller is executing within an RCU read-side critical section? H

This example shows one general approach to reading and updating RCU-protected
data structures, however, there is quite a variety of use cases, several of which are
covered in Section 9.5.4.

In summary, it is in fact possible to create concurrent linked data structures that can
be traversed by readers executing the same sequence of machine instructions that would

10 Some toy RCU implementations that handle preempted read-side critical sections are
shown in Appendix B.

216 CHAPTER 9. DEFERRED PROCESSING

16000
14000
12000
10000 |
8000 |-
6000 |-
4000 -
2000

RCU API| Uses

2002

2004

2006 -
2008 -
2010
2012
2014
2016 -
2018 -
2020

Year
Figure 9.9: RCU Usage in the Linux Kernel

be executed by single-threaded readers. The next section summarizes RCU’s high-level
properties.

9.5.1.4 RCU Properties

RCU achieves scalability improvements by allowing reads to make useful forward
progress concurrently with updates, which are also allowed to make useful forward
progress. This property enables RCU implementations to provide low-cost or even
no-cost readers, in contrast with conventional synchronization primitives that enforce
strict mutual exclusion, thus prohibiting useful concurrent forward progress. RCU
delimits readers with rcu_read_lock() and rcu_read_unlock(), and ensures that
each reader has a coherent view by maintaining multiple versions of objects and using
update-side primitives such as synchronize_rcu() to ensure that objects are not freed
until after the completion of all readers that might be using them. RCU defines and uses
rcu_assign_pointer() and rcu_dereference () to provide efficient and scalable
mechanisms for publishing and reading new versions of an object, respectively. These
mechanisms distribute the work among read and update paths in such a way as to make
read paths extremely fast, using replication and weakening optimizations in a manner
similar to hazard pointers, but without the need for read-side retries. In some cases,
including CONFIG_PREEMPT=n Linux kernels, RCU’s read-side primitives have zero
overhead.

Quick Quiz 9.27: But doesn’t Section 9.4’s seqlock also permit readers and updaters to get
work done concurrently? Wl

But are these properties actually useful in practice? This question is taken up by the
next section.

9.5. READ-COPY UPDATE (RCU) 217

9.5.1.5 Practical Applicability

It turns out that RCU has been used in the Linux kernel since October 2002 [Tor02]. Use
of the RCU API has increased substantially since that time, as can be seen in Figure 9.9.
In fact, code very similar to that in Listing 9.13 could be used in the Linux kernel.

Prior to that, RCU was used in production in Sequent Computer Systems’s DYNIX/ptx
operating system from the early 1990s [MS98a], and prior to that, a similar mechanism
was used in IBM’s VM/XA, possibly as early as the mid-1980s [HOS89]. Finally, as
discussed in Section 9.5.5, mechanisms roughly similar to RCU have also been used in
academic and industrial-research projects as early as 1980 [KL80], and more recently
in production by a number of userspace applications [Des09b, BD13, RH18].

It is therefore safe to say that RCU enjoys wide practical applicability.

The minimal example discussed in this section is a good introduction to RCU.
However, effective use of RCU often requires that you think differently about your
problem. It is therefore useful to examine RCU’s fundamentals, a task taken up by the
following section.

9.5.2 RCU Fundamentals

This section re-examines the ground covered in the previous section, but independent of
any particular example or use case. People who prefer to live their lives very close to
the actual code may wish to skip the underlying fundamentals presented in this section.

RCU is made up of three fundamental mechanisms, the first being used for insertion,
the second being used for deletion, and the third being used to allow readers to tolerate
concurrent insertions and deletions. Section 9.5.2.1 describes the publish-subscribe
mechanism used for insertion, Section 9.5.2.2 describes how waiting for pre-existing
RCU readers enabled deletion, and Section 9.5.2.3 discusses how maintaining multiple
versions of recently updated objects permits concurrent insertions and deletions. Finally,
Section 9.5.2.4 summarizes RCU fundamentals.

9.5.2.1 Publish-Subscribe Mechanism

Because RCU readers are not excluded by RCU updaters, an RCU-protected data
structure might change while a reader accesses it. The accessed data item might be
moved, removed, or replaced. Because the data structure does not “hold still” for the
reader, each reader’s access can be thought of as subscribing to the current version of
the RCU-protected data item. For their part, updaters can be thought of as publishing
new versions.

Unfortunately, as laid out in Section 4.3.4.1 and reiterated in Section 9.5.1.1, it is
unwise to use plain accesses for these publication and subscription operations. It is
instead necessary to inform both the compiler and the CPU of the need for care, as can
be seen from Figure 9.10, which illustrates interactions between concurrent executions
of ins_route() (and its caller) and read_gptr () from Listing 9.13.

The ins_route () column from Figure 9.10 shows ins_route ()’s caller allocating
a new route structure, which then contains pre-initialization garbage. The caller then
initializes the newly allocated structure, and then invokes ins_route () to publish a
pointer to the new route structure. Publication does not affect the contents of the
structure, which therefore remain valid after publication.

The access_route () column from this same figure shows the pointer being sub-
scribed to and dereferenced. This dereference operation absolutely must see a valid

218 CHAPTER 9. DEFERRED PROCESSING

ins_route() access_route()

N OK s

Figure 9.10: Publication/Subscription Constraints

route structure rather than pre-initialization garbage because referencing garbage could
result in memory corruption, crashes, and hangs. As noted earlier, avoiding such
garbage means that the publish and subscribe operations must inform both the compiler
and the CPU of the need to maintain the needed ordering.

Publication is carried out by rcu_assign_pointer (), which ensures that ins_
route () ’s callers initialization is ordered before the actual publication operation’s store
of the pointer. In addition, rcu_assign_pointer () must be atomic in the sense that
concurrent readers see either the old value of the pointer or the new value of the pointer,
but not some mash-up of these two values. These requirements are met by the C11 store-
release operation, and in fact in the Linux kernel, rcu_assign_pointer () is defined
in terms of smp_store_release (), which is roughly similar to C11 store-release.

Note that if concurrent updates are required, some sort of synchronization mechanism
will be required to mediate among multiple concurrent rcu_assign_pointer () calls
on the same pointer. In the Linux kernel, locking is the mechanism of choice, but
pretty much any synchronization mechanism may be used. An example of a particularly
lightweight synchronization mechanism is Chapter 8’s data ownership: If each pointer
is owned by a particular thread, then that thread may execute rcu_assign_pointer ()
on that pointer with no additional synchronization overhead.

Quick Quiz 9.28: Wouldn’t use of data ownership for RCU updaters mean that the updates
could use exactly the same sequence of instructions as would the corresponding single-threaded
code? M

Subscription is carried out by rcu_dereference (), which orders the subscrip-
tion operation’s load from the pointer is before the dereference. Similar to rcu_
assign_pointer (), rcu_dereference () must be atomic in the sense that the value
loaded must be that from a single store, for example, the compiler must not tear the

Edition.2-rc3

9.5. READ-COPY UPDATE (RCU) 219

load.!" Unfortunately, compiler support for rcu_dereference() is at best a work in
progress [MWB* 17, MRP*17, BM18]. In the meantime, the Linux kernel relies on
volatile loads, the details of the various CPU architectures, coding restrictions [McK14c],
and, on DEC Alpha [Cor02], a memory-barrier instruction. However, on other architec-
tures, rcu_dereference () typically emits a single load instruction, just as would the
equivalent single-threaded code. The coding restrictions are described in more detail in
Section 15.3.2, however, the common case of field selection (“->") works quite well.
Software that does not require the ultimate in read-side performance can instead use
C11 acquire loads, which provide the needed ordering and more, albeit at a cost. It
is hoped that lighter-weight compiler support for rcu_dereference () will appear in
due course.

In short, use of rcu_assign_pointer () for publishing pointers and use of rcu_
dereference () for subscribing to them successfully avoids the “Not OK” garbage
loads depicted in Figure 9.10. These two primitives can therefore be used to add new
data to linked structures without disrupting concurrent readers.

Quick Quiz 9.29: But suppose that updaters are adding and removing multiple data items
from a linked list while a reader is iterating over that same list. Specifically, suppose that a list
initially contains elements A, B, and C, and that an updater removes element A and then adds
a new element D at the end of the list. The reader might well see {A, B, C, D}, when that
sequence of elements never actually ever existed! In what alternate universe would that qualify
as “not disrupting concurrent readers”??? W

Adding data to a linked structure without disrupting readers is a good thing, as are the
cases where this can be done with no added read-side cost compared to single-threaded
readers. However, in most cases it is also necessary to remove data, and this is the
subject of the next section.

9.5.2.2 Wait For Pre-Existing RCU Readers

In its most basic form, RCU is a way of waiting for things to finish. Of course, there
are a great many other ways of waiting for things to finish, including reference counts,
reader-writer locks, events, and so on. The great advantage of RCU is that it can wait
for each of (say) 20,000 different things without having to explicitly track each and
every one of them, and without having to worry about the performance degradation,
scalability limitations, complex deadlock scenarios, and memory-leak hazards that are
inherent in schemes using explicit tracking.

In RCU’s case, each of the things waited on is called an RCU read-side critical
section. As hinted at in Section 9.5.1.3, an RCU read-side critical section starts with an
rcu_read_lock() primitive, and ends with a corresponding rcu_read_unlock()
primitive. RCU read-side critical sections can be nested, and may contain pretty much
any code, as long as that code does not contain a quiescent state, for example, within
the Linux kernel, it is illegal to sleep within an RCU read-side critical section because
a context switch is a quiescent state.'” If you abide by these conventions, you can
use RCU to wait for any pre-existing RCU read-side critical section to complete, and
synchronize_rcu() uses indirect means to do the actual waiting [DMS*12, McK13].

11" That is, the compiler must not break the load into multiple smaller loads, as described
under “load tearing” in Section 4.3.4.1.

12 However, a special form of RCU called SRCU [McK06] does permit general sleeping
in SRCU read-side critical sections.

220 CHAPTER 9. DEFERRED PROCESSING

PO()
rcu_read_lock()
Y
x=1;
Y
y=1; Given this ordering ...
Y
rcu_read_unlock() y=2;
Y
synchronize_rcu()
Y
.... RCU guarantees this ordering. X=2;

P10
Figure 9.11: RCU Reader and Later Grace Period

The relationship between an RCU read-side critical section and a later RCU grace
period is an if-then relationship, as illustrated by Figure 9.11. If any portion of a given
critical section precedes the beginning of a given grace period, then RCU guarantees
that all of that critical section will precede the end of that grace period. In the figure,
because PO ()’s access to y precedes P1 () ’s access to this same variable, it is guaranteed
that PO ()’s access to x will precede P1()’s access. In this case, if y’s final value is 2,
then x’s final value is guaranteed to also be 2.

[Quick Quiz 9.30: What other final values of x and y are possible in Figure 9.11? W }

The relationship between an RCU read-side critical section and an earlier RCU grace
period is also an if-then relationship, as illustrated by Figure 9.12. If any portion of a
given critical section follows the end of a given grace period, then RCU guarantees that
all of that critical section will follow the beginning of that grace period. In the figure,
because PO () ’s access to y follows P1()’s access to this same variable, it is guaranteed
that PO()’s access to x will follow P1()’s access. In this case, if y’s final value is 1,
then x’s final value is guaranteed to also be 1.

Finally, as shown in Figure 9.13, an RCU read-side critical section can be completely
overlapped by an RCU grace period. In this case, x’s final value is 1 and y’s final value
is 2.

However, it cannot be the case that x’s final value is 2 and y’s final value is 1. This
would mean that an RCU read-side critical section had completely overlapped a grace
period, which is forbidden. RCU’s wait-for-readers guarantee therefore has two parts:
(1) If any part of a given RCU read-side critical section precedes the beginning of a
given grace period, then the entirety of that critical section precedes the end of that
grace period. (2) If any part of a given RCU read-side critical section follows the end

9.5. READ-COPY UPDATE (RCU) 221

X =2;
PO() L]
o)
rcu_read_lock() = synchronize_rcu()
8
o
y -g Y
x=1; ... RCU guarantees y=2;
Y /
y=1; Given this ordering ...
Y
rcu_read_unlock()

Figure 9.12: RCU Reader and Earlier Grace Period

of a given grace period, then the entirety of that critical section follows the beginning
of that grace period. This definition is sufficient for almost all RCU-based algorithms,
but for those wanting more, simple executable formal models of RCU are available as
part of Linux kernel v4.17 and later, as discussed in Section 12.3.2. In addition, RCU’s
ordering properties are examined in much greater detail in Section 15.4.2.

Although RCU’s wait-for-readers capability really is sometimes used to order the
assignment of values to variables as shown in Figures 9.11-9.13, it is more frequently
used to safely free data elements removed from a linked structure, as was done in
Section 9.5.1. The general process is illustrated by the following pseudocode:

1. Make a change, for example, remove an element from a linked list.

2. Wait for all pre-existing RCU read-side critical sections to completely finish (for
example, by using synchronize_rcu()).

3. Clean up, for example, free the element that was replaced above.

This more abstract procedure requires a more abstract diagram than Figures 9.11-9.13,
which are specific to a particular litmus test. Figure 9.14 fills this need, showing how
the RCU read-side critical sections in the upper left and lower right are ordered with
an asynchronous grace period that starts with a call_rcu() '3 at the upper right and
ends at the lower left with the invocation of the callback functions that was passed to
call_rcu(). This diagram illustrates RCU’s wait-for-readers functionality: Given
a grace period, each reader ends before the end of that grace period, starts after the
beginning of that grace period, or both, in which case it is wholly contained within that
grace period.

Given that RCU readers can make forward progress while updates are in progress,
different readers might disagree about the state of the data structure, a topic taken up by
the next section.

13 As opposed to the synchronous RCU grace periods waited for by synchronize_rcu().

222 CHAPTER 9. DEFERRED PROCESSING

P1()
X=2;
PO() ¢
rcu_read_lock() synchronize_rcu()
x=1; Given this ordering ...
y=1; ... this can happen

rcu_read_unlock()

Figure 9.13: RCU Reader Within Grace Period

9.5.2.3 Maintain Multiple Versions of Recently Updated Objects

This section discusses how RCU accommodates synchronization-free readers by main-
taining multiple versions of data. This discussion builds on the introduction of multiple
versions by Figure 9.7 in Section 9.5.1.1, in which readers running concurrently with
del_route() (see Listing 9.13) might see the old route structure or an empty list, but
either way get a valid result. Of course, a closer look at Figure 9.6 shows that calls to
ins_route () can also result in concurrent readers seeing different versions: Either
the initial empty list or the newly inserted route structure. Note that both reference
counting (Section 9.2) and hazard pointers (Section 9.3) can also cause concurrent
readers to see different versions, but RCU’s extremely lightweight readers can make
different versions more likely.

However, maintaining multiple versions can be even more surprising. For example,
consider Figure 9.15, in which a reader is traversing a linked list that is concurrently
updated.'* In the first row of the figure, the reader is referencing data item A, and in the
second row, it advances to B, having thus far seen A followed by B. In the third row, an
updater removes element A and in the fourth row an updater adds element E to the end
of the list. In the fifth and final row, the reader completes its traversal, having seeing
elements A through E.

Except that there was no time at which such a list existed. This situation might
be even more surprising than that shown in Figure 9.7, in which different concurrent
readers see different versions. In contrast, in Figure 9.15 the reader sees a version that
never actually existed!

One way to resolve this strange situation is via weaker semanitics. A reader traversal
must encounter any data item that was present during the full traversal (B, C, and D),

14 RCU linked-list APIs may be found in Section 9.5.3.

9.5. READ-COPY UPDATE (RCU) 223

If happens before ...

rcu_read_lock() > call_rcu()
/
rcu_read_unlock() /
/
! o
! oS
/ =
/ [0}
o) / o]
— / (2]
o / c
@ /
o / Q
o / o
©
@ / <
Q / c
Q / [}
O] / <
< /I =
c / :
[} /
< / Y
= /
: / rcu_read_lock()
: /
Y y
callback invocation >»| rcu_read_unlock()

If happens before ...

Figure 9.14: RCU Grace-Period Ordering Guarantees

and might or might not encounter data items that were present for only part of the
traversal (A and E). Therefore, in this particular case, it is perfectly legitimate for the
reader traveral to encounter all five elements. If this outcome is problematic, another
way to resolve this situation is through use of stronger synchronization mechanisms,
such as reader-writer locking or clever use of timestamps or versioning. Of course,
stronger mechanisms will be more expensive, but then again the engineering life is all
about choices and tradeoffs.

Strange though this situation might seem, it is entirely consistent with the real world.
As we saw in Section 3.2, the finite speed of light cannot be ignored within a computer
system, but it also cannot be ignored outside of the system. This in turn means that
any data within the system representing state in the real world outside of the system
is always and forever outdated, and thus inconsistent with the real world. As a result,
algorithms operating on real-world data must account for that data being inconsistent
with the real world. In many cases, such algorithms are also perfectly capable of dealing
with inconsistencies within the system.

The pre-BSD packet routing example laid out in Section 9.1 is a case in point.
The contents of a routing list is set by routing protocols, and these protocols feature
significant delays (seconds or even minutes) to avoid various instabilities. These delays
mean that once a routing update reaches a given system, it might well have been sending
packets the wrong way for quite some time. Sending a few more packets the wrong way
for the few microseconds during which the update is in flight is clearly not a problem
because the same higher-level protocol actions that deal with delayed routing updates
will also deal with internal inconsistencies.

Nor is Internet routing the only situation tolerating inconsistencies. To repeat, any
algorithm in which data within a system tracks outside-of-system state must tolerate
inconsistencies, which includes security policies (often set by committees of humans),
storage configuration, and WiFi access points, to say nothing of removable hardware such

224 CHAPTER 9. DEFERRED PROCESSING

Reader {A}
Reader {A, B}
Reader {A, B}
. -
Reader {A, B}

Reader {A, B, C, D, E}

. -

Figure 9.15: Multiple RCU Data-Structure Versions

N

as microphones, headsets, cameras, mice, printers, and much else besides. Furthermore,
the large number of Linux-kernel RCU API uses shown in Figure 9.9, combined with
the Linux kernel’s heavy use of reference counting and with increasing use of hazard
pointers in other projects, demonstrates that tolerance for such inconsistencies is more
common than one might imagine. This is especially the case given that single-item
lookups are much more common than traversals: After all, (1) concurrent updates are
less likely to affect a single-item lookup than they are a full traversal, and (2) an isolated
single-item lookup cannot detect such inconsistencies.

From a more theoretical viewpoint, there are even some special cases where RCU
readers can be considered to be fully ordered with updaters, despite the fact that
these readers might be executing the exact same sequence of machine instructions
that would be executed by a single-threaded program. For example, referring back to
Listing 9.13 on page 214, suppose that each reader thread invokes access_route ()
exactly once during its lifetime, and that there is no other communication among reader
and updater threads. Then each invocation of access_route () can be ordered after
the ins_route () invocation that produced the route structure accessed by line 11 of
the listing in access_route () and ordered before any subsequent ins_route () or
del_route () invocation.

In summary, maintaining multiple versions is exactly what enables the extremely
low overheads of RCU readers, and as noted earlier, many algorithms are unfazed by
multiple versions. However, there are algorithms that absolutely cannot handle multiple

Edition.2-rc3

9.5. READ-COPY UPDATE (RCU) 225

versions. There are techniques for adapting such algorithms to RCU [McKO04], but these
are beyond the scope of this section.

Discussion These examples assumed that a mutex was held across the entire update
operation, which would mean that there could be at most two versions of the list active
at a given time.

Quick Quiz 9.31: How would you modify the deletion example to permit more than two
versions of the list to be active? W

[Quick Quiz 9.32: How many RCU versions of a given list can be active at any given time? .]

9.5.2.4 Summary of RCU Fundamentals
This section has described the three fundamental components of RCU-based algorithms:
1. a publish-subscribe mechanism for adding new data,

2. a way of waiting for pre-existing RCU readers to finish (see Section 15.4.2 for
more detail), and

3. adiscipline of maintaining multiple versions to permit change without harming or
unduly delaying concurrent RCU readers.

Quick Quiz 9.33: How can RCU updaters possibly delay RCU readers, given that the
rcu_read_lock() and rcu_read_unlock() primitives neither spin nor block? W

These three RCU components allow data to be updated in face of concurrent readers
that might be executing the same sequence of machine instructions that would be used by
areader in a single-threaded implementation. These RCU components can be combined
in different ways to implement a surprising variety of different types of RCU-based
algorithms. However, it is usually better to work at higher levels of abstraction. To
this end, the next section describes the Linux-kernel API, which includes simple data
structures such as lists.

9.5.3 RCU Linux-Kernel API

This section looks at RCU from the viewpoint of its Linux-kernel APL'> Section 9.5.3.1
presents RCU’s wait-to-finish APIs, Section 9.5.3.2 presents RCU’s publish-subscribe
and version-maintenance APIs, Section 9.5.3.3 presents RCU’s list-processing APIs,
Section 9.5.3.4 presents RCU’s diagnostic APIs, and Section 9.5.3.5 describes in which
contexts RCU’s various APIs may be used. Finally, Section 9.5.3.6 presents concluding
remarks.

9.5.3.1 RCU has a Family of Wait-to-Finish APIs

The most straightforward answer to “what is RCU” is that RCU is an API. For example,
the RCU implementation used in the Linux kernel is summarized by Table 9.1, which
shows the wait-for-readers portions of the RCU, “sleepable” RCU (SRCU), Tasks RCU,

15 Userspace RCU’s API is documented elsewhere [MDJ13c].

226 CHAPTER 9. DEFERRED PROCESSING

Table 9.1: RCU Wait-to-Finish APIs

RCU: Original SRCU: Sleeping readers Tasks RCU: Free tracing
trampolines
Read-side rcu_read_lock() ! srcu_read_lock() Voluntary context switch
critical-section rcu_read_unlock() ! srcu_read_unlock()
markers rcu_read_lock_bh()

rcu_read_unlock_bh()
rcu_read_lock_sched()
rcu_read_unlock_sched()
rcu_read_lock_sched_notrace()
rcu_read_unlock_sched_notrace()
(Plus anything disabing bottom halves,
preemption, or interrupts.)

Update-side primitives = synchronize_rcu() synchronize_srcu()

(synchronous) synchronize_rcu_expedited() synchronize_srcu_expedited()
synchronize_net ()

Update-side primitives call_rcu() ! call_srcu()

(asynchronous/call-

back)

Update-side primitives rcu_barrier () srcu_barrier ()

(wait for callbacks)

Update-side primitives get_state_synchronize_rcu()
(initiate / wait) cond_synchronize_rcu()
Update-side primitives kfree_rcu()

(free memory)

Type-safe memory SLAB_TYPESAFE_BY_RCU

Read side constraints No blocking (only preemption) No synchronize_srcu() with same
srcu_struct

Read side overhead CPU-local accesses (free on Simple instructions, memory barriers

PREEMPT=n)

Asynchronous sub-microsecond sub-microsecond

update-side overhead

Grace-period latency 10s of milliseconds Milliseconds

Expedited 10s of microseconds Microseconds

grace-period latency

synchronize_rcu_tasks()

call_rcu_tasks()

rcu_barrier_tasks()

No voluntary context switch

Free

sub-microsecond

seconds
N/A

and generic APIs, respectively, and by Table 9.2, which shows the publish-subscribe

portions of the API [McK19b].'6

If you are new to RCU, you might consider focusing on just one of the columns in
Table 9.1, each of which summarizes one member of the Linux kernel’s RCU API
family. For example, if you are primarily interested in understanding how RCU is used
in the Linux kernel, “RCU” would be the place to start, as it is used most frequently. On
the other hand, if you want to understand RCU for its own sake, “Task RCU” has the

simplest API. You can always come back for the other columns later.

If you are already familiar with RCU, these tables can serve as a useful reference.

[Quick Quiz 9.34: Why do some of the cells in Table 9.1 have exclamation marks (“!”)? H J

The “RCU: Original” column corresponds to the consolidation of the three Linux-
kernel RCU implementations [McK19c, McK19a], in which RCU read-side critical

16 This citation covers v4.20 and later. Documetation for earlier versions of the Linux-

kernel RCU API may be found elsewhere [McK08d, McK14d].

9.5. READ-COPY UPDATE (RCU) 227

sections start with rcu_read_lock(), rcu_read_lock_bh(), or rcu_read_lock_
sched() and end with rcu_read_unlock(), rcu_read_unlock_bh(), or rcu_
read_unlock_sched(), respectively. Any region of code that disables bottom halves,
interrupts, or preemption also acts as an RCU read-side critical section. RCU read-side
critical sections may be nested. The corresponding synchronous update-side primitives,
synchronize_rcu(), along with its synonym synchronize_net (), wait for any
type of currently executing RCU read-side critical sections to complete. The length
of this wait is known as a “grace period”. The asynchronous update-side primitive,
call_rcu(), invokes a specified function with a specified argument after a subsequent
grace period. For example, call_rcu(p,f) ; will result in the “RCU callback™ £ (p)
being invoked after a subsequent grace period. There are situations, such as when
unloading a Linux-kernel module that uses call_rcu(), when it is necessary to wait for
all outstanding RCU callbacks to complete [McK07¢]. The rcu_barrier () primitive
does this job.

Finally, RCU may be used to provide type-safe memory [GC96], as described in
Section 9.5.4.7. In the context of RCU, type-safe memory guarantees that a given data
element will not change type during any RCU read-side critical section that accesses it.
To make use of RCU-based type-safe memory, pass SLAB_TYPESAFE_BY_RCU to kmem_
cache_create(). Itis important to note that SLAB_TYPESAFE_BY_RCU will in no way
prevent kmem_cache_alloc () from immediately reallocating memory that was just
now freed via kmem_cache_free()! In fact, the SLAB_TYPESAFE_BY_RCU-protected
data structure just returned by rcu_dereference might be freed and reallocated an
arbitrarily large number of times, even when under the protection of rcu_read_lock().
Instead, SLAB_TYPESAFE_BY_RCU operates by preventing kmem_cache_free() from
returning a completely freed-up slab of data structures to the system until after an
RCU grace period elapses. In short, although a given RCU read-side critical section
might see a given SLAB_TYPESAFE_BY_RCU data element being freed and reallocated
arbitrarily often, the element’s type is guaranteed not to change until that critical section
has completed.

Quick Quiz 9.35: How do you prevent a huge number of RCU read-side critical sections from
indefinitely blocking a synchronize_rcu() invocation? H

Quick Quiz 9.36: The synchronize_rcu() API waits for all pre-existing interrupt handlers
to complete, right? Wl

The “SRCU: Sleeping readers” column in Table 9.1 displays a specialized RCU API
that permits general sleeping in SRCU read-side critical sections [McKO06] delimited
by srcu_read_lock() and srcu_read_unlock(). However, unlike RCU, SRCU’s
srcu_read_lock() returns a value that must be passed into the corresponding srcu_
read_unlock(). This difference is due to the fact that the SRCU user allocates an
srcu_struct for each distinct SRCU usage. These distinct srcu_struct structures
prevent SRCU read-side critical sections from blocking unrelated synchronize_
srcu() invocations. Of course, use of synchronize_srcu() in an SRCU read-side
critical section can result in self-deadlock, so should be avoided.

Quick Quiz 9.37: Under what conditions can synchronize_srcu() be safely used within
an SRCU read-side critical section? H

Similar to normal RCU, self-deadlock can be avoided using the asynchronous
call_srcu() function, but special care must be taken when using call_srcu().

228 CHAPTER 9. DEFERRED PROCESSING

Table 9.2: RCU Publish-Subscribe and Version Maintenance APIs

Category Primitives Overhead

Pointer publish rcu_assign_pointer() Memory barrier
rcu_replace_pointer () Memory barrier (two of them on Alpha)
rcu_pointer_handoff () Simple instructions
RCU_INIT_POINTER() Simple instructions
RCU_POINTER_INITIALIZER() Compile-time constant

Pointer subscribe (traveral) rcu_access_pointer() Simple instructions
rcu_dereference () Simple instructions (memory barrier on Alpha)
rcu_dereference_check() Simple instructions (memory barrier on Alpha)
rcu_dereference_protected() Simple instructions
rcu_dereference_raw() Simple instructions (memory barrier on Alpha)

rcu_dereference_raw_notrace() Simple instructions (memory barrier on Alpha)

[Quick Quiz 9.38: Why should you be careful with call_srcu()? H]

Also similar to RCU, there is an srcu_barrier () function that waits for all prior
call_srcu() callbacks to be invoked.

In other words, SRCU compensates for its extremely weak forward-progress guarantees
by permitting the developer to restrict its scope.

9.5.3.2 RCU has Publish-Subscribe and Version-Maintenance APIs

Fortunately, the RCU publish-subscribe and version-maintenance primitives shown in
Table 9.2 apply to all of the variants of RCU discussed above. This commonality can
allow more code to be shared, and reduces API proliferation. The original purpose of
the RCU publish-subscribe APIs was to bury memory barriers into these APIs, so that
Linux kernel programmers could use RCU without needing to become expert on the
memory-ordering models of each of the 20+ CPU families that Linux supports [SprO1].
These primitives operate directly on pointers, and are useful for creating RCU-
protected linked data structures, such as RCU-protected arrays and trees. The special
case of linked lists is handled by a separate set of APIs described in Section 9.5.3.3.
The first category publishes pointers to new data items. The rcu_assign_
pointer () primitive ensures that any prior initialization remains ordered before the
assignment to the pointer on weakly ordered machines. The rcu_replace_pointer ()
primitive updates the pointer just like rcu_assign_pointer () does, but also returns
the previous value, just like rcu_dereference_protected() (see below) would,
including the lockdep expression. This replacement is convenient when the updater
must both publish a new pointer and free the structure referenced by the old pointer.

Quick Quiz 9.39: Normally, any pointer subject to rcu_dereference () must always be
updated using one of the pointer-publish functions in Table 9.2, for example, rcu_assign_
pointer ().

What is an exception to this rule? Wl

Quick Quiz 9.40: Are there any downsides to the fact that these traversal and update primitives
can be used with any of the RCU API family members? W

The rcu_pointer_handoff () primitive simply returns its sole argument, but is
useful to tooling checking for pointers being leaked from RCU read-side critical sections.

9.5. READ-COPY UPDATE (RCU) 229

> next next next next —
— prev prev prev prev e
A B C

Figure 9.16: Linux Circular Linked List (1ist)

Use of rcu_pointer_handoff () indicates to such tooling that protection of the
structure in question has been handed off from RCU to some other mechanism, such as
locking or reference counting.

The RCU_INIT_POINTER() macro can be used to initialized RCU-protected pointers
that have not yet been exposed to readers, or alternatively, to set RCU-protected
pointers to NULL. In these restricted cases, the memory-barrier instructions provided by
rcu_assign_pointer () are not needed. Similarly, RCU_POINTER_INITIALIZER()
provides a GCC-style structure initializer to allow easy initialization of RCU-protected
pointers in structures.

The second category subscribes to pointers to data items, or, alternatively, safely
traverses RCU-protected pointers. Again, simply loading these pointers using C-
language accesses could result in seeing pre-initialization garbage in the pointed-to
data. However, if the pointer is merely to be tested and not dereferenced, this
protection is not needed. In this case, rcu_access_pointer () may be used. Normally,
however, protection is required, and so the rcu_dereference () primitive ensures
that subsequent code dereferencing the pointer will see the effects of initialization
code prior to the corresponding rcu_assign_pointer (), even on Alpha CPUs. On
non-Alpha CPUs, rcu_dereference () documents which pointer dereferences require
RCU protection.

Another situation where protection is not required is when update-side code accesses
the RCU-protected pointer while holding the update-side lock. The rcu_dereference_
protected() API member is provided for this situation. Its first parameter is the
RCU-protected pointer, and the second parameter takes a lockdep expression describing
which locks must be held in order for the access to be safe. Code invoked both from
readers and updaters can use rcu_dereference_check(), which also takes a lockdep
expression, but which may also be invoked from read-side code not holding the locks.
In some cases, the lockdep expressions can be very complex, for example, when
using fine-grained locking, any of a very large number of locks might be held, and
it might be quite difficult to work out which applies. In these (hopefully rare) cases,
rcu_dereference_raw() provides protection but does not check for being invoked
within a reader or with any particular lock being held. The rcu_dereference_raw_
notrace() API member acts similarly, but cannot be traced, and may therefore be
safely used by tracing code.

Although pretty much any linked structure can be accessed by manipulating pointers,
higher-level structures can be quite helpful. The next section therefore looks at various
sorts of RCU-protected linked lists used by the Linux kernel.

230 CHAPTER 9. DEFERRED PROCESSING

A {5]

Figure 9.17: Linux Linked List Abbreviated

| first |—> next next next

L |pprev N pprev N pprev

A B C

Figure 9.18: Linux Linear Linked List (hlist)

9.5.3.3 RCU has List-Processing APIs

Although rcu_assign_pointer () and rcu_dereference() can in theory be used
to construct any conceivable RCU-protected data structure, in practice it is often
better to use higher-level constructs. Therefore, the rcu_assign_pointer () and
rcu_dereference() primitives have been embedded in special RCU variants of
Linux’s list-manipulation API. Linux has four variants of doubly linked list, the circu-
lar struct list_head and the linear struct hlist_head/struct hlist_node,
struct hlist_nulls_head/struct hlist_nulls_node, and struct hlist_
bl_head/struct hlist_bl_node pairs. The former is laid out as shown in Fig-
ure 9.16, where the green (leftmost) boxes represent the list header and the blue
(rightmost three) boxes represent the elements in the list. This notation is cumbersome,
and will therefore be abbreviated as shown in Figure 9.17, which shows only the
non-header (blue) elements.

Linux’s h1ist!” is a linear list, which means that it needs only one pointer for the
header rather than the two required for the circular list, as shown in Figure 9.18. Thus,
use of hlist can halve the memory consumption for the hash-bucket arrays of large hash
tables. As before, this notation is cumbersome, so hlist structures will be abbreviated
in the same way list_head-style lists are, as shown in Figure 9.17.

A variant of Linux’s hlist, named hlist_nulls, provides multiple distinct NULL
pointer, but otherwise uses the same layout as shown in Figure 9.18. In this variant, a
->next pointer having a zero low-order bit is considered to be a pointer. However, if
the low-order bit is set to one, the upper bits identify the type of NULL pointer. This type
of list is used to allow lockless readers to detect when a node has been moved from one
list to another. For example, each bucket of a hash table might use its index to mark its
NULL pointer. Should a reader encounter a NULL pointer not matching the index of the
bucket it started from, that reader knows that an element it was traversing was moved
to some other bucket during the traversal, taking that reader with it. The reader can
use the is_a_nulls () function (which returns true if passed an hlist_nulls NULL
pointer) to determine when it reaches the end of a list, and the get_nulls_value ()
function (which returns its argument’s NULL-pointer identifier) to fetch the type of NULL
pointer. When get_nulls_values () returns an unexpected value, the reader can take
corrective action, for example, restarting its traversal from the beginning.

17 The “h” stands for hashtable, where it enjoys half of the storage requirements of Linux’s
circular linked list.

9.5. READ-COPY UPDATE (RCU) 231

Quick Quiz 9.41: But what if an h1ist_nulls reader gets moved to some other bucket and
then back again? W

More information on hlist_nulls is available in the Linux-kernel source tree, with
helpful example code provided in the rculist_nulls.rst file (rculist_nulls.txt
in older kernels).

Another variant of Linux’s hlist incorporates bit-locking, and is named hlist_bl.
This variant uses the same layout as shown in Figure 9.18, but reserves the low-order bit
of the head pointer (“first” in the figure) to lock the list. This approach also reduces
memory usage, as it allows what would otherwise be a separate spinlock to be stored
with the pointer itself.

The API members for these linked-list variants are summarized in Table 9.3. More
information is available in the Documentation/RCU directory of the Linux-kernel
source tree and at Linux Weekly News [McK19b].

However, the remainder of this section expands on the use of 1ist_replace_rcu(),
given that this API member gave RCU its name. This API member is used to carry out
more complex updates in which an element in the middle of the list having multiple
fields is atomically updated, so that a given reader sees either the old set of values or the
new set of values, but not a mixture of the two sets. For example, each node of a linked
list might have integer fields ->a, ->b, and ->c, and it might be necessary to update a
given node’s fields from 5, 6, and 7 to 5, 2, and 3, respectively.

The code implementing this atomic update is straightforward:

15| q = kmalloc(sizeof (*p), GFP_KERNEL);

16 | *q = *p;
171 9q->b = 2;
18| q->c = 3;

19 | list_replace_rcu(&p->list, &q->list);
20 | synchronize_rcu();
21 | kfree(p);

The following discussion walks through this code, using Figure 9.19 to illustrate the
state changes. The triples in each element represent the values of fields ->a, ->b, and
->c, respectively. The red-shaded elements might be referenced by readers, and because
readers do not synchronize directly with updaters, readers might run concurrently with
this entire replacement process. Please note that backwards pointers and the link from
the tail to the head are omitted for clarity.

The initial state of the list, including the pointer p, is the same as for the deletion
example, as shown on the first row of the figure.

The following text describes how to replace the 5,6,7 element with 5,2, 3 in such a
way that any given reader sees one of these two values.

Line 15 kmalloc()s a replacement element, as follows, resulting in the state as
shown in the second row of Figure 9.19. At this point, no reader can hold a reference to
the newly allocated element (as indicated by its green shading), and it is uninitialized
(as indicated by the question marks).

Line 16 copies the old element to the new one, resulting in the state as shown in the
third row of Figure 9.19. The newly allocated element still cannot be referenced by
readers, but it is now initialized.

Line 17 updates g—>b to the value “2”, and line 18 updates q—>c to the value “3”, as
shown on the fourth row of Figure 9.19.

Now, line 19 does the replacement, so that the new element is finally visible to readers,
and hence is shaded red, as shown on the fifth row of Figure 9.19. At this point, as

CHAPTER 9. DEFERRED PROCESSING

232

Table 9.3: RCU-Protected List APIs

list: Circular doubly linked list

hlist: Linear doubly linked list

hlist_nulls: Linear doubly linked list
with marked NULL pointer, with up to
31 bits of marking

hlist_bl: Linear doubly linked list
with bit locking

Structures
struct list_head

Initialization

Full traversal

list_for_each_entry_rcu()
list_for_each_entry_lockless()

Resume traversal

list_for_each_entry_continue_rcu()
list_for_each_entry_from_rcu()

Stepwise traversal

list_entry_rcu()
list_entry_lockless()
list_first_or_null_rcu()
list_next_rcu()
list_next_or_null_rcu()

Add

list_add_rcu()
list_add_tail_rcu()

Delete
list_del_rcu()

Replace
list_replace_rcu()
Splice

list_splice_init_rcu()

struct hlist_head
struct hlist_node

INIT_LIST_HEAD_RCU()

hlist_for_each_entry_rcu()
hlist_for_each_entry_rcu_bh()
hlist_for_each_entry_rcu_notrace()

hlist_for_each_entry_continue_rcu()

hlist_for_each_entry_continue_rcu_bh()

hlist_for_each_entry_from_rcu()

hlist_first_rcu()
hlist_next_rcu()
hlist_pprev_rcu()

hlist_add_before_rcu()
hlist_add_behind_rcu()
hlist_add_head_rcu()
hlist_add_tail_rcu()

hlist_del_rcu()
hlist_del_init_rcu()

hlist_replace_rcu()

list_splice_tail_init_rcu()

struct hlist_nulls_head
struct hlist_nulls_node

hlist_nulls_for_each_entry_rcu()
hlist_nulls_for_each_entry_safe()

hlist_nulls_first_rcu()
hlist_nulls_next_rcu()

hlist_nulls_add_head_rcu()

hlist_nulls_del_rcu()
hlist_nulls_del_init_rcu()

struct hlist_bl_head
struct hlist_bl_node

hlist_bl_for_each_entry_rcu()

hlist_bl_first_rcu()

hlist_bl_add_head_rcu()
hlist_bl_set_first_rcu()

hlist_bl_del_rcu()
hlist_bl_del_init_rcu()

9.5. READ-COPY UPDATE (RCU) 233

%
— G

ﬂate/k

list_replace_rcu()

5,6,7

synchronize_rcu()

Figure 9.19: RCU Replacement in Linked List

Edition.2-rc3

234 CHAPTER 9. DEFERRED PROCESSING

Table 9.4: RCU Diagnostic APIs

Category Primitives

Mark RCU pointer __rcu

Debug-object support init_rcu_head()
destroy_rcu_head()
init_rcu_head_on_stack()
destroy_rcu_head_on_stack()

Stall-warning control rcu_cpu_stall_reset()

Callback checking rcu_head_init ()
rcu_head_after_call_rcu()

lockdep support rcu_read_lock_held()
rcu_read_lock_bh_held()
rcu_read_lock_sched_held()
srcu_read_lock_held()
rcu_is_watching()
RCU_LOCKDEP_WARN ()
RCU_NONIDLE()
rcu_sleep_check()

shown below, we have two versions of the list. Pre-existing readers might see the 5,6,7
element (which is therefore now shaded yellow), but new readers will instead see the
5,2,3 element. But any given reader is guaranteed to see one set of values or the other,
not a mixture of the two.

After the synchronize_rcu() on line 20 returns, a grace period will have elapsed,
and so all reads that started before the 1ist_replace_rcu() will have completed. In
particular, any readers that might have been holding references to the 5,6, 7 element are
guaranteed to have exited their RCU read-side critical sections, and are thus prohibited
from continuing to hold a reference. Therefore, there can no longer be any readers
holding references to the old element, as indicated its green shading in the sixth row of
Figure 9.19. As far as the readers are concerned, we are back to having a single version
of the list, but with the new element in place of the old.

After the kfree () on line 21 completes, the list will appear as shown on the final
row of Figure 9.19.

Despite the fact that RCU was named after the replacement case, the vast majority
of RCU usage within the Linux kernel relies on the simple independent insertion and
deletion, as was shown in Figure 9.15 in Section 9.5.2.3.

The next section looks at APIs that assist developers in debugging their code that
makes use of RCU.

9.5.3.4 RCU Has Diagnostic APIs

Table 9.4 shows RCU’s diagnostic APIs.

The __rcu marks an RCU-protected pointer, for example,
“struct foo __rcu *p;”. Pointers that might be passed to rcu_dereference()
can be marked, but pointers holding values returned from rcu_dereference () should
not be. Providing these markings on variables, structure fields, function parameters,

and return values allow the Linux kernel’s sparse tool to detect situtations where

9.5. READ-COPY UPDATE (RCU) 235

RCU-protected pointers are incorrectly accessed using plain C-language loads and
stores.

Debug-object support is automatic for any rcu_head structures that are part of a
structure obtained from the Linux kernel’s memory allocators, but those building their
own special-purpose memory allocators can use init_rcu_head() and destroy_
rcu_head () atallocation and free time, respectively. Those using rcu_head structures
allocated on the function-call stack (it happens!) may use init_rcu_head_on_
stack() before first use and destroy_rcu_head_on_stack() after last use, but
before returning from the function. Debug-object support allows detection of bugs
involving passing the same rcu_head structure to call_rcu() and friends in quick
succession, which is the call_rcu() counterpart to the infamous double-free class of
bugs.

Stall-warning control is provided by rcu_cpu_stall_reset (), which allows the
caller to suppress RCU CPU stall warnings for the remainder of the current grace
period. RCU CPU stall warnings help pinpoint situations where an RCU read-side
critical section runs for an excessive length of time, and it is useful for things like kernel
debuggers to be able to suppress them, for example, when encountering a breakpoint.

Callback checking is provided by rcu_head_init () and rcu_head_after_call_
rcu(). The former is invoked on an rcu_head structure before it is passed to call_
rcu(), and then rcu_head_after_call_rcu() will check to see if the callback is
has been invoked with the specified function.

Support for lockdep [Cor06a] includes rcu_read_lock_held(),rcu_read_lock_
bh_held(), rcu_read_lock_sched_held(), and srcu_read_lock_held(), each
of which returns true if invoked within the corresponding type of RCU read-side
critical section.

[Quick Quiz 9.42: Why isn’t there a rcu_read_lock_tasks () for Tasks RCU? M }

Because rcu_read_lock() cannot be used from the idle loop, and because energy-
efficiency concerns have caused the idle loop to become quite ornate, rcu_is_
watching() returns true if invoked in a context where use of rcu_read_lock()
is legal. Note again that srcu_read_lock() may be used from idle and even offline
CPUs, which means that rcu_is_watching() does not apply to SRCU.

RCU_LOCKDEP_WARN () emits a warning if lockdep is enabled and if its argument
evaluated to true. For example, RCU_LOCKDEP_WARN(!rcu_read_lock_held())
would emit a warning if invoked outside of an RCU read-side critical section.

RCU_NONIDLE() may be used to force RCU to watch when executing the statement
that is passed in as the sole argument. For example, RCU_NONIDLE(WARN_ON('rcu_
is_watching())) would never emit a warning.

Finally, rcu_sleep_check() emits a warning if invoked within an RCU, RCU-bh,
or RCU-sched read-side critical section.

9.5.3.5 Where Can RCU’s APIs Be Used?

Figure 9.20 shows which APIs may be used in which in-kernel environments. The
RCU read-side primitives may be used in any environment, including NMI, the RCU
mutation and asynchronous grace-period primitives may be used in any environment
other than NMI, and, finally, the RCU synchronous grace-period primitives may
be used only in process context. The RCU list-traversal primitives include 1ist_
for_each_entry_rcu(),hlist_for_each_entry_rcu(), etc. Similarly, the RCU
list-mutation primitives include 1ist_add_rcu(),hlist_del_rcu(), etc.

236 CHAPTER 9. DEFERRED PROCESSING

—_—

NMI
~$57
685
Lo c >
OCc O0m —
IS &= | <
IRQ ol | &
TT D+ B =)
0@ 5.2 =
So035 =8
(e} 855
S _|_ID =
23380 c =
°fx o-'v
252
© D .
Process S \L &J synchronize_rcu()
) \L
e

Figure 9.20: RCU API Usage Constraints

Note that primitives from other families of RCU may be substituted, for example,
srcu_read_lock() may be used in any context in which rcu_read_lock() may be
used.

9.5.3.6 So, What is RCU Really?

At its core, RCU is nothing more nor less than an API that supports publication and
subscription for insertions, waiting for all RCU readers to complete, and maintenance
of multiple versions. That said, it is possible to build higher-level constructs on top of
RCU, including the reader-writer-locking, reference-counting, and existence-guarantee
constructs listed in Section 9.5.4. Furthermore, I have no doubt that the Linux community
will continue to find interesting new uses for RCU, just as they do for any of a number
of synchronization primitives throughout the kernel.

Of course, a more-complete view of RCU would also include all of the things you
can do with these APIs.

However, for many people, a complete view of RCU must include sample RCU
implementations. Appendix B therefore presents a series of “toy” RCU implementations
of increasing complexity and capability, though others might prefer the classic “User-
Level Implementations of Read-Copy Update” [DMS™*12]. For everyone else, the next
section gives an overview of some RCU use cases.

9.5.4 RCU Usage

This section answers the question “What is RCU?” from the viewpoint of the uses to
which RCU can be put. Because RCU is most frequently used to replace some existing
mechanism, we look at it primarily in terms of its relationship to such mechanisms, as
listed in Table 9.5. Following the sections listed in this table, Section 9.5.4.9 provides a
summary.

9.5.4.1 RCU for Pre-BSD Routing

Listings 9.14 and 9.15 show code for an RCU-protected Pre-BSD routing table (route_
rcu.c). The former shows data structures and route_lookup (), and the latter shows
route_add() and route_del ().

9.5. READ-COPY UPDATE (RCU) 237

Listing 9.14: RCU Pre-BSD Routing Table Lookup

| struct route_entry {

2 struct rcu_head rh;

3 struct cds_list_head re_next;
4 unsigned long addr;

5 unsigned long iface;
6
7
8
9

int re_freed;
};
CDS_LIST_HEAD(route_list);
DEFINE_SPINLOCK (routelock) ;
10
11l unsigned long route_lookup(unsigned long addr)

2 {

13 struct route_entry *rep;

14 unsigned long ret;

15

16 rcu_read_lock();

17 cds_list_for_each_entry_rcu(rep, &route_list, re_next) {
18 if (rep->addr == addr) {

19 ret = rep->iface;

20 if (READ_ONCE(rep->re_freed))
21 abort () ;

2 rcu_read_unlock();

23 return ret;

24 }

25 }

26 rcu_read_unlock();

27 return ULONG_MAX;

28 }

Listing 9.15: RCU Pre-BSD Routing Table Add/Delete

1 int route_add(unsigned long addr, unsigned long interface)
2 {

3 struct route_entry *rep;

4

5 rep = malloc(sizeof (*rep));

6 if (!rep)

7 return -ENOMEM;

8 rep—>addr = addr;

9 rep->iface = interface;

10 rep->re_freed = 0;

11 spin_lock(&routelock) ;

12 cds_list_add_rcu(&rep->re_next, &route_list);

13 spin_unlock(&routelock);

14 return O;

15 }

16

17 static void route_cb(struct rcu_head *rhp)

18 {

19 struct route_entry *rep;

20

21 rep = container_of (rhp, struct route_entry, rh);
2 WRITE_ONCE(rep->re_freed, 1);

23 free(rep);

24 ¥

25

26 int route_del(unsigned long addr)

27 {

28 struct route_entry *rep;

29

30 spin_lock(&routelock) ;

31 cds_list_for_each_entry(rep, &route_list, re_next) {
32 if (rep->addr == addr) {

33 cds_list_del_rcu(&rep->re_next);
34 spin_unlock(&routelock);

35 call_rcu(&rep->rh, route_cb);

36 return 0;

37 }

38 }

39 spin_unlock(&routelock);

40 return -ENOENT;

41}

238 CHAPTER 9. DEFERRED PROCESSING

Table 9.5: RCU Usage

Mechanism RCU Replaces Section
Reader-writer locking Section 9.5.4.2
Restricted reference-counting mechanism Section 9.5.4.3
Bulk reference-counting mechanism Section 9.5.4.4
Poor man’s garbage collector Section 9.5.4.5
Existence Guarantees Section 9.5.4.6
Type-Safe Memory Section 9.5.4.7
Wait for things to finish Section 9.5.4.8
2.5x10’ T T T T T T]

T 2107

Q

z

£ 15x10

=

g

@ 1x10’

2

8

3 sx10°

0
0 50 100150200250 300 350 400 450
Number of CPUs (Threads)

Figure 9.21: Pre-BSD Routing Table Protected by RCU

In Listing 9.14, line 2 adds the ->rh field used by RCU reclamation, line 6 adds
the ->re_freed use-after-free-check field, lines 16, 22, and 26 add RCU read-side
protection, and lines 20 and 21 add the use-after-free check. In Listing 9.15, lines 11,
13, 30, 34, and 39 add update-side locking, lines 12 and 33 add RCU update-side
protection, line 35 causes route_cb() to be invoked after a grace period elapses, and
lines 17-24 define route_cb (). This is minimal added code for a working concurrent
implementation.

Figure 9.21 shows the performance on the read-only workload. RCU scales quite
well, and offers nearly ideal performance. However, this data was generated using
the RCU_SIGNAL flavor of userspace RCU [Des09b, MDJ13c], for which rcu_read_
lock() and rcu_read_unlock() generate a small amount of code. What happens for
the QSBR flavor of RCU, which generates no code at all for rcu_read_lock() and
rcu_read_unlock()? (See Section 9.5.1, and especially Figure 9.8, for a discussion
of RCU QSBR.)

The answer to this is shown in Figure 9.22, which shows that RCU QSBR’s perfor-
mance and scalability actually exceeds that of the ideal synchronization-free workload.

Quick Quiz 9.43: Wait, what??? How can RCU QSBR possibly be better than ideal? Just
what rubbish definition of ideal would fail to be the best of all possible results??? H

Quick Quiz 9.44: Given RCU QSBR’s read-side performance, why bother with any other
flavor of userspace RCU? M

9.5. READ-COPY UPDATE (RCU) 239

2.5x107

2x107

1.5x107

1x107

Lookups per Millisecond

5x10°

0
0 50 100 150200250 300 350 400 450
Number of CPUs (Threads)

Figure 9.22: Pre-BSD Routing Table Protected by RCU QSBR

9.5.4.2 RCU is a Reader-Writer Lock Replacement

Perhaps the most common use of RCU within the Linux kernel is as a replacement
for reader-writer locking in read-intensive situations. Nevertheless, this use of RCU
was not immediately apparent to me at the outset, in fact, I chose to implement a
lightweight reader-writer lock [HW92]'® before implementing a general-purpose RCU
implementation back in the early 1990s. Each and every one of the uses I envisioned for
the lightweight reader-writer lock was instead implemented using RCU. In fact, it was
more than three years before the lightweight reader-writer lock saw its first use. Boy,
did I feel foolish!

The key similarity between RCU and reader-writer locking is that both have read-side
critical sections that can execute in parallel. In fact, in some cases, it is possible to
mechanically substitute RCU API members for the corresponding reader-writer lock
API members. But first, why bother?

Advantages of RCU include performance, deadlock immunity, and realtime latency.
There are, of course, limitations to RCU, including the fact that readers and updaters run
concurrently, that low-priority RCU readers can block high-priority threads waiting for a
grace period to elapse, and that grace-period latencies can extend for many milliseconds.
These advantages and limitations are discussed in the following sections.

Performance The read-side performance advantages of Linux-kernel RCU over
reader-writer locking are shown in Figure 9.23, which was generated on a 448-CPU
2.10 GHz Intel x86 system.

Quick Quiz 9.45: WTF? How the heck do you expect me to believe that RCU can have less
than a 300-picosecond overhead when the clock period at 2.10 GHz is almost 500 picoseconds?

Quick Quiz 9.46: Didn’t an earlier release of this book show RCU read-side overhead way
down in the sub-picosecond range? What happened??? W

[Quick Quiz 9.47: Why is there such large variation for the rcu trace in Figure 9.23? H]

18 Similar to brlock in the 2.4 Linux kernel and to 1glock in more recent Linux kernels.

240 CHAPTER 9. DEFERRED PROCESSING

10000 p————rrrr——— 3.

S 1000 : o :
= rwlock e
s = ;
o TTF]
o 100 F $4%?i ;
o - L 3
g i At 1
S 10 *FF rcu E
[0} E 3
2 F E
o - i
3 1k -
pd E 3
0.1 [ol Lol]

1 10 100

Number of CPUs (Threads)

Figure 9.23: Performance Advantage of RCU Over Reader-Writer Locking

10000 p—r—r—rrrr
g o, I
5| 5
g 1000 ¢ rwiock E
o = 3 1
° i fi 1
5 []
a =TT
P 100 L+t E
® g I]
3 oo F l
2 10 I reu E
[- (I S e o B
=z o 1 4
1 Y |

1 10 100
Number of CPUs (Threads)

Figure 9.24: Performance Advantage of Preemptible RCU Over Reader-Writer Locking

Note that reader-writer locking is more than an order of magnitude slower than RCU
on a single CPU, and is more than four orders of magnitude slower on 192 CPUs. In
contrast, RCU scales quite well. In both cases, the error bars cover the full range of the
measurements from 30 runs, with the line being the median.

A more moderate view may be obtained from a CONFIG_PREEMPT kernel, though
RCU still beats reader-writer locking by between a factor of seven on a single CPU
and by three orders of magnitude on 192 CPUs, as shown in Figure 9.24, which was
generated on the same 448-CPU 2.10 GHz x86 system. Note the high variability of
reader-writer locking at larger numbers of CPUs. The error bars span the full range of
data.

Quick Quiz 9.48: Given that the system had no fewer than 448 hardware threads, why only
192 CPUs? A

Of course, the low performance of reader-writer locking in Figures 9.23 and 9.24 is
exaggerated by the unrealistic zero-length critical sections. The performance advantages
of RCU decrease as the overhead of the critical sections increase. This decrease can
be seen in Figure 9.25, which was run on the same system as the previous plots. Here,

9.5. READ-COPY UPDATE (RCU) 241

100000 p———rrr————+r

10000 rwlock 1007VCPUs

Nanoseconds per operation

100 M| MR
100 1000 10000

Critical-Section Duration (nanoseconds)

Figure 9.25: Comparison of RCU to Reader-Writer Locking as Function of Critical-
Section Duration

the y-axis represents the sum of the overhead of the read-side primitives and that of the
critical section and the x-axis represents the critical-section overhead in nanoseconds.
But please note the logscale y axis, which means that the small separations between the
traces still represent significant differences. This figure shows non-preemptible RCU,
but given that preemptible RCU’s read-side overhead is only about three nanoseconds,
its plot would be nearly identical to Figure 9.25.

Quick Quiz 9.49: Why the larger error ranges for the submicrosecond durations in Figure 9.25?

There are three traces for reader-writer locking, with the upper trace being for
100 CPUs, the next for 10 CPUs, and the lowest for 1 CPU. So the greater the number of
CPUs and the shorter the critical sections, the greater is RCU’s performance advantage.
These performance advantages are underscored by the fact that 100-CPU systems are
no longer uncommon and that a number of system calls (and thus any RCU read-side
critical sections that they contain) complete within a microsecond.

In addition, as is discussed in the next section, RCU read-side primitives are almost
entirely deadlock-immune.

Deadlock Immunity Although RCU offers significant performance advantages for
read-mostly workloads, one of the primary reasons for creating RCU in the first place
was in fact its immunity to read-side deadlocks. This immunity stems from the fact that
RCU read-side primitives do not block, spin, or even do backwards branches, so that
their execution time is deterministic. It is therefore impossible for them to participate in
a deadlock cycle.

Quick Quiz 9.50: Is there an exception to this deadlock immunity, and if so, what sequence of
events could lead to deadlock? W

An interesting consequence of RCU’s read-side deadlock immunity is that it is
possible to unconditionally upgrade an RCU reader to an RCU updater. Attempting
to do such an upgrade with reader-writer locking results in deadlock. A sample code
fragment that does an RCU read-to-update upgrade follows:

1 | rcu_read_lock();
2 | list_for_each_entry_rcu(p, &head, list_field) {

242 CHAPTER 9. DEFERRED PROCESSING

’ rwlock reader | spin rwlock reader

| rwlock reader | spin rwlock reader

’ rwlock reader ! | spin rwlock reader
I spin | rwlock writer

|
’ RCU reader, | RCU reader | RCU reader |
‘ RCU réader | RCU reader | RCU reader |
’ RCU reader | | RCU reader | RCU reader |
| RCU updater ‘

/ Time

Update Received

Figure 9.26: Response Time of RCU vs. Reader-Writer Locking

do_something_with(p);
if (need_update(p)) {
spin_lock(my_lock) ;
do_update(p) ;
spin_unlock(&my_lock) ;
¥
¥

rcu_read_unlock();

S0 ®u o wm AW

Note that do_update () is executed under the protection of the lock and under RCU
read-side protection.

Another interesting consequence of RCU’s deadlock immunity is its immunity to a
large class of priority inversion problems. For example, low-priority RCU readers cannot
prevent a high-priority RCU updater from acquiring the update-side lock. Similarly, a
low-priority RCU updater cannot prevent high-priority RCU readers from entering an
RCU read-side critical section.

Quick Quiz 9.51: Immunity to both deadlock and priority inversion??? Sounds too good to
be true. Why should I believe that this is even possible? W

Realtime Latency Because RCU read-side primitives neither spin nor block, they
offer excellent realtime latencies. In addition, as noted earlier, this means that they are
immune to priority inversion involving the RCU read-side primitives and locks.

However, RCU is susceptible to more subtle priority-inversion scenarios, for example,
a high-priority process blocked waiting for an RCU grace period to elapse can be
blocked by low-priority RCU readers in -rt kernels. This can be solved by using RCU
priority boosting [McK07d, GMTWOS].

RCU Readers and Updaters Run Concurrently Because RCU readers never spin
nor block, and because updaters are not subject to any sort of rollback or abort semantics,
RCU readers and updaters must necessarily run concurrently. This means that RCU
readers might access stale data, and might even see inconsistencies, either of which can
render conversion from reader-writer locking to RCU non-trivial.

However, in a surprisingly large number of situations, inconsistencies and stale data
are not problems. The classic example is the networking routing table. Because routing
updates can take considerable time to reach a given system (seconds or even minutes),

9.5. READ-COPY UPDATE (RCU) 243

the system will have been sending packets the wrong way for quite some time when
the update arrives. It is usually not a problem to continue sending updates the wrong
way for a few additional milliseconds. Furthermore, because RCU updaters can make
changes without waiting for RCU readers to finish, the RCU readers might well see the
change more quickly than would batch-fair reader-writer-locking readers, as shown in
Figure 9.26.

Once the update is received, the rwlock writer cannot proceed until the last reader
completes, and subsequent readers cannot proceed until the writer completes. However,
these subsequent readers are guaranteed to see the new value, as indicated by the green
shading of the rightmost boxes. In contrast, RCU readers and updaters do not block
each other, which permits the RCU readers to see the updated values sooner. Of course,
because their execution overlaps that of the RCU updater, all of the RCU readers might
well see updated values, including the three readers that started before the update.
Nevertheless only the green-shaded rightmost RCU readers are guaranteed to see the
updated values.

Reader-writer locking and RCU simply provide different guarantees. With reader-
writer locking, any reader that begins after the writer begins is guaranteed to see new
values, and any reader that attempts to begin while the writer is spinning might or
might not see new values, depending on the reader/writer preference of the rwlock
implementation in question. In contrast, with RCU, any reader that begins after the
updater completes is guaranteed to see new values, and any reader that completes after
the updater begins might or might not see new values, depending on timing.

The key point here is that, although reader-writer locking does indeed guarantee
consistency within the confines of the computer system, there are situations where this
consistency comes at the price of increased inconsistency with the outside world. In
other words, reader-writer locking obtains internal consistency at the price of silently
stale data with respect to the outside world.

Nevertheless, there are situations where inconsistency and stale data within the
confines of the system cannot be tolerated. Fortunately, there are a number of approaches
that avoid inconsistency and stale data [McK04, ACMSO03], and some methods based
on reference counting are discussed in Section 9.2.

Low-Priority RCU Readers Can Block High-Priority Reclaimers In Realtime
RCU [GMTWO08], SRCU [McKO06], or QRCU [McKO7f] (see Section 12.1.4), a
preempted reader will prevent a grace period from completing, even if a high-priority
task is blocked waiting for that grace period to complete. Realtime RCU can avoid
this problem by substituting call_rcu() for synchronize_rcu() or by using RCU
priority boosting [McK07d, GMTWOS], which is still in experimental status as of early
2008. It might become necessary to augment SRCU and QRCU with priority boosting,
but not before a clear real-world need is demonstrated.

RCU Grace Periods Extend for Many Milliseconds With the exception of QRCU
and several of the “toy” RCU implementations described in Appendix B, RCU grace
periods extend for multiple milliseconds. Although there are a number of techniques to
render such long delays harmless, including use of the asynchronous interfaces where
available (call_rcu() and call_rcu_bh()), this situation is a major reason for the
rule of thumb that RCU be used in read-mostly situations.

244 CHAPTER 9. DEFERRED PROCESSING

Comparison of Reader-Writer Locking and RCU Code In the best case, the con-
version from reader-writer locking to RCU is quite simple, as shown in Listings 9.16,
9.17, and 9.18, all taken from Wikipedia [MPA*06].

Listing 9.16: Converting Reader-Writer Locking to RCU: Data

1 struct el { 1 struct el {

2 struct list_head 1p; 2 struct list_head 1p;

3 long key; 3 long key;

4 spinlock_t mutex; 4 spinlock_t mutex;

5 int data; 5 int data;

6 /* Other data fields */ 6 /* Other data fields */
7%} [H

8 DEFINE_RWLOCK(listmutex); 8 DEFINE_SPINLOCK (listmutex);
9 LIST_HEAD(head) ; 9 LIST_HEAD(head);

Listing 9.17: Converting Reader-Writer Locking to RCU: Search

1 int search(long key, int *result) 1 int search(long key, int *result)
2 { 2 {

3 struct el *p; 3 struct el *p;

4 4

5 read_lock(&listmutex); 5 rcu_read_lock();

6 list_for_each_entry(p, &head, 1lp) { 6 list_for_each_entry_rcu(p, &head, 1lp) {
7 if (p->key == key) { 7 if (p->key == key) {

8 *result = p->data; 8 *result = p->data;

9 read_unlock(&listmutex) ; 9 rcu_read_unlock();

10 return 1; 10 return 1;

11 } 11 ¥

12 } 12 ¥

13 read_unlock(&listmutex); 13 rcu_read_unlock();

14 return O; 14 return O;

15 } 15 }

Listing 9.18: Converting Reader-Writer Locking to RCU: Deletion

1 int delete(long key) 1 int delete(long key)

2 { 2 {

3 struct el *p; 3 struct el *p;

4 4

5 write_lock(&listmutex); 5 spin_lock(&listmutex);

6 list_for_each_entry(p, &head, 1p) { 6 1list_for_each_entry(p, &head, 1p) {

7 if (p->key == key) { 7 if (p->key == key) {

8 list_del(&p->1p); 8 list_del_rcu(&p->1p);

9 write_unlock(&listmutex); 9 spin_unlock(&listmutex);
10 synchronize_rcu();

10 kfree(p); 11 kfree(p);

11 return 1; 12 return 1;

12 } 13 }

13 } 14 ¥

14 write_unlock(&listmutex); 15 spin_unlock(&listmutex);

15 return 0; 16 return O;

16 } 17 }

However, the transformation is not always this straightforward. This is because neither
the spin_lock() nor the synchronize_rcu() in Listing 9.18 exclude the readers in
Listing 9.17. First, the spin_lock() does not interact in any way with rcu_read_
lock() and rcu_read_unlock(), thus not excluding them. Second, although both
write_lock() and synchronize_rcu() wait for pre-existing readers, only write_
lock() prevents subsequent readers from commencing.'” Thus, synchronize_rcu()
cannot exclude readers. It is therefore surprising that a great many situations using
reader-writer locking can be easily converted to RCU.

19 Kudos to whoever pointed this out to Paul.

9.5. READ-COPY UPDATE (RCU) 245

More-elaborate cases of replacing reader-writer locking with RCU may be found
elsewhere [Brol5a, Brol5b].

9.5.4.3 RCU is a Restricted Reference-Counting Mechanism

Because grace periods are not allowed to complete while there is an RCU read-side
critical section in progress, the RCU read-side primitives may be used as a restricted
reference-counting mechanism. For example, consider the following code fragment:

rcu_read_lock(); /* acquire reference. */

p = rcu_dereference(head);

/* do something with p. */
rcu_read_unlock(); /* release reference. */

oW =

The rcu_read_lock() primitive can be thought of as acquiring a reference to p,
because a grace period starting after the rcu_dereference () assigns to p cannot
possibly end until after we reach the matching rcu_read_unlock(). This reference-
counting scheme is restricted in that we are not allowed to block in RCU read-side
critical sections, nor are we permitted to hand off an RCU read-side critical section
from one task to another.

Regardless of these restrictions, the following code can safely delete p:

spin_lock(&mylock) ;

p = head;

rcu_assign_pointer (head, NULL);
spin_unlock(&mylock) ;

/* Wait for all references to be released. */
synchronize_rcu();

kfree(p);

RO T T

The assignment to head prevents any future references to p from being acquired, and
the synchronize_rcu() waits for any previously acquired references to be released.

Quick Quiz 9.52: But wait! This is exactly the same code that might be used when thinking
of RCU as a replacement for reader-writer locking! What gives? W

Of course, RCU can also be combined with traditional reference counting, as discussed
in Section 13.2.

But why bother? Again, part of the answer is performance, as shown in Figures 9.27
and 9.28, again showing data taken on a 448-CPU 2.1 GHz Intel x86 system for non-
preemptible and preemptible Linux-kernel RCU, respectively. Non-preemptible RCU’s
advantage over reference counting ranges from more than an order of magnitude at one
CPU up to about four orders of magnitude at 192 CPUs. Preemptible RCU’s advantage
ranges from about a factor of three at one CPU up to about three orders of magnitude at
192 CPUs.

However, as with reader-writer locking, the performance advantages of RCU are
most pronounced for short-duration critical sections and for large numbers of CPUs, as
shown Figure 9.29 for the same system. In addition, as with reader-writer locking, many
system calls (and thus any RCU read-side critical sections that they contain) complete
in a few microseconds.

However, the restrictions that go with RCU can be quite onerous. For example, in
many cases, the prohibition against sleeping while in an RCU read-side critical section
would defeat the entire purpose. The next section looks at ways of addressing this

246 CHAPTER 9. DEFERRED PROCESSING

10000 ———+—rr——————3
= ﬁé%
< i]
S 1000 £ . 3
%— i refcnti;t]
o TTEE
S qolL _ JHT .
g g 1 T?yﬂ]
) r []
o .
5 10 £ ok .
[S] F 3
(0] F]
[} - 3
g r reu 1
(] 1E E
z E 3
0.1 [Ll Ll]

1 10 100
Number of CPUs (Threads)

Figure 9.27: Performance of RCU vs. Reference Counting

10000 p———r—r—rrrrr————
c [_ ¥]
k) .

8 1000 $¥3%f*f 4
3 g refent _F]
° i ‘@}ii 1

T

e 100 | \ij:i -
o E | E
s [T ‘J‘]
o S

? s 1
2 10 ke _ rcu E
© F - ' - B
=z Foo - =

1 R B

1 10 100
Number of CPUs (Threads)

Figure 9.28: Performance of Preemptible RCU vs. Reference Counting

problem, while also reducing the complexity of traditional reference counting, at least
in some cases.?’

9.54.4 RCU is a Bulk Reference-Counting Mechanism

As noted in the preceding section, traditional reference counters are usually associated
with a specific data structure, or perhaps a specific group of data structures. However,
maintaining a single global reference counter for a large variety of data structures
typically results in bouncing the cache line containing the reference count. Such
cache-line bouncing can severely degrade performance.

In contrast, RCU’s lightweight read-side primitives permit extremely frequent read-
side usage with negligible performance degradation, permitting RCU to be used as a
“bulk reference-counting” mechanism with little or no performance penalty. Situations
where a reference must be held by a single task across a section of code that blocks
may be accommodated with Sleepable RCU (SRCU) [McKO06]. This fails to cover

20 Other cases might be better served by the hazard pointers mechanism described in
Section 9.3.

9.5. READ-COPY UPDATE (RCU) 247

100000 ————rrrrr————
c r]
9o B 1
§ -
S 10000 |- refent100CPUs o A
N Fe— - B E
8 .’/ N '/,/]
(%2} o .
3 | 10cPUs . 1
é -:—-’*‘"'—:E";
3 1000 = A rcu =
2 F1CPU 1
©
P4 F > i
100 | Lol
100 1000 10000

Critical-Section Duration (nanoseconds)

Figure 9.29: Response Time of RCU vs. Reference Counting

the not-uncommon situation where a reference is “passed” from one task to another,
for example, when a reference is acquired when starting an I/O and released in the
corresponding completion interrupt handler. (In principle, this could be handled by the
SRCU implementation, but in practice, it is not yet clear whether this is a good tradeoft.)

Of course, SRCU brings restrictions of its own, namely that the return value from
srcu_read_lock() be passed into the corresponding srcu_read_unlock(), and that
no SRCU primitives be invoked from hardware interrupt handlers or from non-maskable
interrupt (NMI) handlers. The jury is still out as to how much of a problem is presented
by these restrictions, and as to how they can best be handled.

9.54.5 RCU is a Poor Man’s Garbage Collector

A not-uncommon exclamation made by people first learning about RCU is “RCU is sort
of like a garbage collector!” This exclamation has a large grain of truth, but it can also
be misleading.

Perhaps the best way to think of the relationship between RCU and automatic
garbage collectors (GCs) is that RCU resembles a GC in that the timing of collection is
automatically determined, but that RCU differs from a GC in that: (1) the programmer
must manually indicate when a given data structure is eligible to be collected, and (2) the
programmer must manually mark the RCU read-side critical sections where references
might legitimately be held.

Despite these differences, the resemblance does go quite deep, and has appeared in at
least one theoretical analysis of RCU. Furthermore, the first RCU-like mechanism I am
aware of used a garbage collector to handle the grace periods. Nevertheless, a better
way of thinking of RCU is described in the following section.

9.5.4.6 RCU Provides Existence Guarantees

Gamsa et al. [GKAS99] discuss existence guarantees and describe how a mechanism
resembling RCU can be used to provide these existence guarantees (see section 5 on page
7 of the PDF), and Section 7.4 discusses how to guarantee existence via locking, along
with the ensuing disadvantages of doing so. The effect is that if any RCU-protected
data element is accessed within an RCU read-side critical section, that data element is
guaranteed to remain in existence for the duration of that RCU read-side critical section.

248 CHAPTER 9. DEFERRED PROCESSING

Listing 9.19: Existence Guarantees Enable Per-Element Locking

1 int delete(int key)

2 {

3 struct element *p;

4 int b;

5

6 b = hashfunction(key);

7 rcu_read_lock();

3 p = rcu_dereference(hashtable[b]);
9 if (p == NULL || p->key != key) {
10 rcu_read_unlock();

11 return O;

12 }

13 spin_lock(&p->lock);

14 if (hashtable[b] == p && p->key == key) {
15 rcu_read_unlock();

16 rcu_assign_pointer(hashtable[b], NULL);
17 spin_unlock(&p->lock) ;

18 synchronize_rcu();

19 kfree(p);

20 return 1;

21 }

2 spin_unlock (&p->lock) ;

23 rcu_read_unlock();

24 return 0;

25)

Listing 9.19 demonstrates how RCU-based existence guarantees can enable per-
element locking via a function that deletes an element from a hash table. Line 6
computes a hash function, and line 7 enters an RCU read-side critical section. If line 9
finds that the corresponding bucket of the hash table is empty or that the element present
is not the one we wish to delete, then line 10 exits the RCU read-side critical section
and line 11 indicates failure.

Quick Quiz 9.53: What if the element we need to delete is not the first element of the list on
line 9 of Listing 9.19? W

Otherwise, line 13 acquires the update-side spinlock, and line 14 then checks that the
element is still the one that we want. If so, line 15 leaves the RCU read-side critical
section, line 16 removes it from the table, line 17 releases the lock, line 18 waits for
all pre-existing RCU read-side critical sections to complete, line 19 frees the newly
removed element, and line 20 indicates success. If the element is no longer the one we
want, line 22 releases the lock, line 23 leaves the RCU read-side critical section, and
line 24 indicates failure to delete the specified key.

Quick Quiz 9.54: Why is it OK to exit the RCU read-side critical section on line 15 of
Listing 9.19 before releasing the lock on line 177 W

before releasing the lock on line 22? W

Quick Quiz 9.55: Why not exit the RCU read-side critical section on line 23 of Listing 9.19 ’

Alert readers will recognize this as only a slight variation on the original “RCU is
a way of waiting for things to finish” theme, which is addressed in Section 9.5.4.8.
They might also note the deadlock-immunity advantages over the lock-based existence
guarantees discussed in Section 7.4.

9.54.7 RCU Provides Type-Safe Memory

A number of lockless algorithms do not require that a given data element keep the same
identity through a given RCU read-side critical section referencing it—but only if that

9.5. READ-COPY UPDATE (RCU) 249

data element retains the same type. In other words, these lockless algorithms can tolerate
a given data element being freed and reallocated as the same type of structure while they
are referencing it, but must prohibit a change in type. This guarantee, called “type-safe
memory” in academic literature [GCI6], is weaker than the existence guarantees in the
previous section, and is therefore quite a bit harder to work with. Type-safe memory
algorithms in the Linux kernel make use of slab caches, specially marking these caches
with SLAB_TYPESAFE_BY_RCU so that RCU is used when returning a freed-up slab to
system memory. This use of RCU guarantees that any in-use element of such a slab
will remain in that slab, thus retaining its type, for the duration of any pre-existing RCU
read-side critical sections.

Quick Quiz 9.56: But what if there is an arbitrarily long series of RCU read-side critical
sections in multiple threads, so that at any point in time there is at least one thread in the
system executing in an RCU read-side critical section? Wouldn’t that prevent any data from a
SLAB_TYPESAFE_BY_RCU slab ever being returned to the system, possibly resulting in OOM
events? Wl

These algorithms typically use a validation step that checks to make sure that the
newly referenced data structure really is the one that was requested [LS86, Section 2.5].
These validation checks require that portions of the data structure remain untouched by
the free-reallocate process. Such validation checks are usually very hard to get right,
and can hide subtle and difficult bugs.

Therefore, although type-safety-based lockless algorithms can be extremely helpful
in a very few difficult situations, you should instead use existence guarantees where
possible. Simpler is after all almost always better!

9.5.4.8 RCU is a Way of Waiting for Things to Finish

As noted in Section 9.5.2 an important component of RCU is a way of waiting for RCU
readers to finish. One of RCU’s great strength is that it allows you to wait for each
of thousands of different things to finish without having to explicitly track each and
every one of them, and without having to worry about the performance degradation,
scalability limitations, complex deadlock scenarios, and memory-leak hazards that are
inherent in schemes that use explicit tracking.

In this section, we will show how synchronize_sched () ’s read-side counterparts
(which include anything that disables preemption, along with hardware operations
and primitives that disable interrupts) permit you to implement interactions with non-
maskable interrupt (NMI) handlers that would be quite difficult if using locking. This
approach has been called “Pure RCU” [McK04], and it is used in a number of places in
the Linux kernel.

The basic form of such “Pure RCU” designs is as follows:

1. Make a change, for example, to the way that the OS reacts to an NMI.

2. Wait for all pre-existing read-side critical sections to completely finish (for example,
by using the synchronize_sched () primitive). The key observation here is that
subsequent RCU read-side critical sections are guaranteed to see whatever change
was made.

3. Clean up, for example, return status indicating that the change was successfully
made.

250 CHAPTER 9. DEFERRED PROCESSING

Listing 9.20: Using RCU to Wait for NMlIs to Finish
struct profile_buffer {
long size;
atomic_t entry[0];

1
2
3
4}

5 static struct profile_buffer *buf = NULL;
6

7

8

void nmi_profile(unsigned long pcvalue)

{
9 struct profile_buffer *p = rcu_dereference(buf);
10
1 if (p == NULL)

12 return;

13 if (pcvalue >= p->size)

14 return;

15 atomic_inc(&p->entry[pcvaluel);
16 }

17

18 void nmi_stop(void)

19 {

20 struct profile_buffer *p = buf;
21

2 if (p == NULL)

23 return;

24 rcu_assign_pointer (buf, NULL);
25 synchronize_sched() ;

2 kfree(p);

27 }

The remainder of this section presents example code adapted from the Linux kernel.
In this example, the timer_stop function uses synchronize_sched () to ensure that
all in-flight NMI notifications have completed before freeing the associated resources.
A simplified version of this code is shown Listing 9.20.

Lines 1-4 define a profile_buffer structure, containing a size and an indefinite
array of entries. Line 5 defines a pointer to a profile buffer, which is presumably
initialized elsewhere to point to a dynamically allocated region of memory.

Lines 7-16 define the nmi_profile() function, which is called from within an
NMI handler. As such, it cannot be preempted, nor can it be interrupted by a normal
interrupts handler, however, it is still subject to delays due to cache misses, ECC errors,
and cycle stealing by other hardware threads within the same core. Line 9 gets a local
pointer to the profile buffer using the rcu_dereference () primitive to ensure memory
ordering on DEC Alpha, and lines 11 and 12 exit from this function if there is no profile
buffer currently allocated, while lines 13 and 14 exit from this function if the pcvalue
argument is out of range. Otherwise, line 15 increments the profile-buffer entry indexed
by the pcvalue argument. Note that storing the size with the buffer guarantees that the
range check matches the buffer, even if a large buffer is suddenly replaced by a smaller
one.

Lines 18-27 define the nmi_stop() function, where the caller is responsible for
mutual exclusion (for example, holding the correct lock). Line 20 fetches a pointer to the
profile buffer, and lines 22 and 23 exit the function if there is no buffer. Otherwise, line 24
NULLSs out the profile-buffer pointer (using the rcu_assign_pointer () primitive to
maintain memory ordering on weakly ordered machines), and line 25 waits for an RCU
Sched grace period to elapse, in particular, waiting for all non-preemptible regions of
code, including NMI handlers, to complete. Once execution continues at line 26, we
are guaranteed that any instance of nmi_profile () that obtained a pointer to the old
buffer has returned. It is therefore safe to free the buffer, in this case using the kfree ()
primitive.

9.5. READ-COPY UPDATE (RCU) 251

Quick Quiz 9.57: Suppose that the nmi_profile () function was preemptible. What would
need to change to make this example work correctly? W

In short, RCU makes it easy to dynamically switch among profile buffers (you just
try doing this efficiently with atomic operations, or at all with locking!). However, RCU
is normally used at a higher level of abstraction, as was shown in the previous sections.

9.54.9 RCU Usage Summary

At its core, RCU is nothing more nor less than an API that provides:

1. a publish-subscribe mechanism for adding new data,
2. a way of waiting for pre-existing RCU readers to finish, and

3. adiscipline of maintaining multiple versions to permit change without harming or
unduly delaying concurrent RCU readers.

That said, it is possible to build higher-level constructs on top of RCU, including
the reader-writer-locking, reference-counting, and existence-guarantee constructs listed
in the earlier sections. Furthermore, I have no doubt that the Linux community will
continue to find interesting new uses for RCU, as well as for any of a number of other
synchronization primitives.

Pre-BSD Routing Table

Stale and Inconsistent Data OK /
EY

100% Writes
100% Reads

Need Fully Fresh and Consistent Data

* 1. RCU provides ABA protection for update-friendly synchronization mechanisms
2. RCU provides bounded wait-free read-side primitives for real-time use

Figure 9.30: RCU Areas of Applicability

In the meantime, Figure 9.30 shows some rough rules of thumb on where RCU is
most helpful.

As shown in the blue box at the top of the figure, RCU works best if you have
read-mostly data where stale and inconsistent data is permissible (but see below for
more information on stale and inconsistent data). The canonical example of this case in
the Linux kernel is routing tables. Because it may have taken many seconds or even
minutes for the routing updates to propagate across the Internet, the system has been
sending packets the wrong way for quite some time. Having some small probability of
continuing to send some of them the wrong way for a few more milliseconds is almost
never a problem.

If you have a read-mostly workload where consistent data is required, RCU works
well, as shown by the green “read-mostly, need consistent data” box. One example

Edition.2-rc3

252 CHAPTER 9. DEFERRED PROCESSING

of this case is the Linux kernel’s mapping from user-level System-V semaphore IDs
to the corresponding in-kernel data structures. Semaphores tend to be used far more
frequently than they are created and destroyed, so this mapping is read-mostly. However,
it would be erroneous to perform a semaphore operation on a semaphore that has
already been deleted. This need for consistency is handled by using the lock in the
in-kernel semaphore data structure, along with a “deleted” flag that is set when deleting
a semaphore. If a user ID maps to an in-kernel data structure with the “deleted” flag set,
the data structure is ignored, so that the user ID is flagged as invalid.

Although this requires that the readers acquire a lock for the data structure representing
the semaphore itself, it allows them to dispense with locking for the mapping data
structure. The readers therefore locklessly traverse the tree used to map from ID to
data structure, which in turn greatly improves performance, scalability, and real-time
response.

As indicated by the yellow “read-write” box, RCU can also be useful for read-write
workloads where consistent data is required, although usually in conjunction with a
number of other synchronization primitives. For example, the directory-entry cache in
recent Linux kernels uses RCU in conjunction with sequence locks, per-CPU locks, and
per-data-structure locks to allow lockless traversal of pathnames in the common case.
Although RCU can be very beneficial in this read-write case, such use is often more
complex than that of the read-mostly cases.

Finally, as indicated by the red box at the bottom of the figure, update-mostly
workloads requiring consistent data are rarely good places to use RCU, though there are
some exceptions [DMS™*12]. In addition, as noted in Section 9.5.4.7, within the Linux
kernel, the SLAB_TYPESAFE_BY_RCU slab-allocator flag provides type-safe memory
to RCU readers, which can greatly simplify non-blocking synchronization and other
lockless algorithms.

In short, RCU is an API that includes a publish-subscribe mechanism for adding
new data, a way of waiting for pre-existing RCU readers to finish, and a discipline of
maintaining multiple versions to allow updates to avoid harming or unduly delaying
concurrent RCU readers. This RCU API is best suited for read-mostly situations,
especially if stale and inconsistent data can be tolerated by the application.

9.5.5 RCU Related Work

The known first mention of anything resembling RCU took the form of a bug report from
Donald Knuth [Knu73, page 413 of Fundamental Algorithms] against J. Weizenbaum’s
SLIP list-processing facility for FORTRAN [Wei63]. Knuth was justified in reporting
the bug, as SLIP had no notion of any sort of grace-period guarantee.

The first known non-bug-report mention of anything resembling RCU appeared in
Kung’s and Lehman’s landmark paper [KL80]. There was some additional use of
this technique in academia [ML82, ML84, Lis88, Pug90, And91, PAB*95, CAK*96,
RSB*97, GKAS99], but much of the work in this area was carried out by practi-
tioners [RTY*87, HOS89, Jac93, Joh95, SM95, SM97, SM98, MS98a]. By the year
2000, the initiative had passed to open-source projects, most notably the Linux kernel
community [Rus00a, Rus00b, MSO1, MAK*01, MSA*02, ACMS03].2!

However, in the mid 2010s, there was a welcome upsurge in RCU research and
development across a number of communities and institutions [Kaal5]. Section 9.5.5.1

21 A list of citations with well over 200 entries may be found in bib/RCU.bib in the
I&TEX source for this book.

9.5. READ-COPY UPDATE (RCU) 253

describes uses of RCU, Section 9.5.5.2 describes RCU implementations (as well as work
that both creates and uses an implementation), and finally, Section 9.5.5.3 describes
verification and validation of RCU and its uses.

9.5.5.1 RCU Uses

Phil Howard and Jon Walpole of Portland State University (PSU) have applied RCU to
red-black trees [How12, HW11] combined with updates synchronized using software
transactional memory. Josh Triplett and Jon Walpole (again of PSU) applied RCU
to resizable hash tables [Tril2, TMW11, Corl4c, Corl4d]. Other RCU-protected
resizable hash tables have been created by Herbert Xu [Xu10] and by Mathieu Desnoy-
ers [MDJ13a].

Austin Clements, Frans Kaashoek, and Nickolai Zeldovich of MIT created an RCU-
optimized balanced binary tree (Bonsai) [CKZ12], and applied this tree to the Linux
kernel’s VM subsystem in order to reduce read-side contention on the Linux kernel’s
mmap_sem. This work resulted in order-of-magnitude speedups and scalability up to at
least 80 CPUs for a microbenchmark featuring large numbers of minor page faults. This
is similar to a patch developed earlier by Peter Zijlstra [Zij14], and both were limited
by the fact that, at the time, filesystem data structures were not safe for RCU readers.
Clements et al. avoided this limitation by optimizing the page-fault path for anonymous
pages only. More recently, filesystem data structures have been made safe for RCU
readers [Corl10a, Corl1], so perhaps this work can be implemented for all page types,
not just anonymous pages—Peter Zijlstra has, in fact, recently prototyped exactly this,
and Laurent Dufour has continued work along these lines.

Yandong Mao and Robert Morris of MIT and Eddie Kohler of Harvard University
created another RCU-protected tree named Masstree [MKM12] that combines ideas
from B+ trees and tries. Although this tree is about 2.5x slower than an RCU-protected
hash table, it supports operations on key ranges, unlike hash tables. In addition, Masstree
supports efficient storage of objects with long shared key prefixes and, furthermore,
provides persistence via logging to mass storage.

The paper notes that Masstree’s performance rivals that of memcached, even given that
Masstree is persistently storing updates and memcached is not. The paper also compares
Masstree’s performance to the persistent datastores MongoDB, VoltDB, and Redis,
reporting significant performance advantages for Masstree, in some cases exceeding two
orders of magnitude. Another paper [TZK*13], by Stephen Tu, Wenting Zheng, Barbara
Liskov, and Samuel Madden of MIT and Kohler, applies Masstree to an in-memory
database named Silo, achieving 700K transactions per second (42M transactions per
minute) on a well-known transaction-processing benchmark. Interestingly enough, Silo
guarantees linearizability without incurring the overhead of grace periods while holding
locks.

Maya Arbel and Hagit Attiya of Technion took a more rigorous approach [AA14]
to an RCU-protected search tree that, like Masstree, allows concurrent updates. This
paper includes a proof of correctness, including proof that all operations on this
tree are linearizable. Unfortunately, this implementation achieves linearizability by
incurring the full latency of grace-period waits while holding locks, which degrades
scalability of update-only workloads. One way around this problem is to abandon
linearizability [HKLP12, McK14b]), however, Arbel and Attiya instead created an RCU
variant that reduces low-end grace-period latency. Of course, nothing comes for free,
and this RCU variant appears to hit a scalability limit at about 32 CPUs. Although
there is much to be said for dropping linearizability, thus gaining both performance

254 CHAPTER 9. DEFERRED PROCESSING

and scalability, it is very good to see academics experimenting with alternative RCU
implementations.

9.5.5.2 RCU Implementations

Mathieu Desnoyers created a user-space RCU for use in tracing [Des09b, Des09a,
DMS*12], which has seen use in a number of projects [BD13].

Researchers at Charles University in Prague have also been working on RCU
implementations, including dissertations by Andrej Podzimek [Pod10] and Adam
Hraska [Hral3].

Yujie Liu (Lehigh University), Victor Luchangco (Oracle Labs), and Michael Spear
(also Lehigh) [LLS13] pressed scalable non-zero indicators (SNZI) [ELLMO07] into
service as a grace-period mechanism. The intended use is to implement software
transactional memory (see Section 17.2), which imposes linearizability requirements,
which in turn seems to limit scalability.

RCU-like mechanisms are also finding their way into Java. Sivaramakrishnan
et al. [SZJ12] use an RCU-like mechanism to eliminate the read barriers that are
otherwise required when interacting with Java’s garbage collector, resulting in significant
performance improvements.

Ran Liu, Heng Zhang, and Haibo Chen of Shanghai Jiao Tong University cre-
ated a specialized variant of RCU that they used for an optimized “passive reader-
writer lock” [LZC14], similar to those created by Gautham Shenoy [She06] and
Srivatsa Bhat [Bhal4]. The Liu et al. paper is interesting from a number of perspec-
tives [McK14e].

Mike Ash posted [Ash15] a description of an RCU-like primitive in Apple’s Objective-
C runtime. This approach identifies read-side critical sections via designated code
ranges, thus qualifying as another method of achieving zero read-side overhead, albeit
one that poses some interesting practical challenges for large read-side critical sections
that span multiple functions.

Pedro Ramalhete and Andreia Correia [RC15] produced “Poor Man’s RCU”, which,
despite using a pair of reader-writer locks, manages to provide lock-free forward-progress
guarantees to readers [MP15a].

Maya Arbel and Adam Morrison [AM15] produced “Predicate RCU”, which works
hard to reduce grace-period duration in order to efficiently support algorithms that hold
update-side locks across grace periods. This results in reduced batching of updates into
grace periods and reduced scalability, but does succeed in providing short grace periods.

Quick Quiz 9.58: Why not just drop the lock before waiting for the grace period, or using
something like call_rcu() instead of waiting for a grace period? W

Alexander Matveev (MIT), Nir Shavit (MIT and Tel-Aviv University), Pascal Felber
(University of Neuchatel), and Patrick Marlier (also University of Neuchatel) [MSFM15]
produced an RCU-like mechanism that can be thought of as software transactional
memory that explicitly marks read-only transactions. Their use cases require holding
locks across grace periods, which limits scalability [MP15a, MP15b]. This appears to
be the first academic RCU-related work to make good use of the rcutorture test suite,
and also the first to have submitted a performance improvement to Linux-kernel RCU,
which was accepted into v4.4.

Geoff Romer and Andrew Hunter (both at Google) proposed a cell-based API for
RCU protection of singleton data structures for inclusion in the C++ standard [RH17].

9.5. READ-COPY UPDATE (RCU) 255

9.5.5.3 RCU Validation

In early 2017, it is commonly recognized that almost any bug is a potential security
exploit, so validation and verification are first-class concerns.

Researchers at Stony Brook University have produced an RCU-aware data-race
detector [Dugl0, Sey12, SRK*11]. Alexey Gotsman of IMDEA, Noam Rinetzky of
Tel Aviv University, and Hongseok Yang of the University of Oxford have published a
paper [GRY 12] expressing the formal semantics of RCU in terms of separation logic,
and have continued with other aspects of concurrency.

Joseph Tassarotti (Carnegie-Mellon University), Derek Dreyer (Max Planck Institute
for Software Systems), and Viktor Vafeiadis (also MPI-SWS) [TDV15] produced a
manual formal proof of correctness of the quiescent-state-based reclamation (QSBR)
variant of userspace RCU [Des09b, DMS™*12]. Lihao Liang (University of Oxford), Paul
E. McKenney (IBM), Daniel Kroening, and Tom Melham (both also Oxford) [LMKM16]
used the C bounded model checker (CBMC) [CKL04] to produce a mechanical proof
of correctness of a significant portion of Linux-kernel Tree RCU. Lance Roy [Roy17]
used CBMC to produce a similar proof of correctness for a significant portion of
Linux-kernel sleepable RCU (SRCU) [McKO06]. Finally, Michalis Kokologiannakis
and Konstantinos Sagonas (National Technical University of Athens) [KS17a] used the
Nighugg tool [LSLK14] to produce a mechanical proof of correctness of a somewhat
larger portion of Linux-kernel Tree RCU.

None of these efforts located any bugs other than bugs injected into RCU specifically
to test the verification tools. In contrast, Alex Groce (Oregon State University), Iftekhar
Ahmed, Carlos Jensen (both also OSU), and Paul E. McKenney (IBM) [GAJM15]
automatically mutated Linux-kernel RCU’s source code to test the coverage of the
rcutorture test suite. The effort found several holes in this suite’s coverage, one of
which was hiding a real bug (since fixed) in Tiny RCU.

With some luck, all of this validation work will eventually result in more and better
tools for validating concurrent code.

9.5.6 RCU Exercises

This section is organized as a series of Quick Quizzes that invite you to apply RCU to a
number of examples earlier in this book. The answer to each Quick Quiz gives some
hints, and also contains a pointer to a later section where the solution is explained at
length. The rcu_read_lock(), rcu_read_unlock(), rcu_dereference(), rcu_
assign_pointer(), and synchronize_rcu() primitives should suffice for most of
these exercises.

Quick Quiz 9.59: The statistical-counter implementation shown in Listing 5.5 (count_end. c)
used a global lock to guard the summation in read_count (), which resulted in poor performance
and negative scalability. How could you use RCU to provide read_count () with excellent
performance and good scalability. (Keep in mind that read_count()’s scalability will
necessarily be limited by its need to scan all threads’ counters.) H

Quick Quiz 9.60: Section 5.4.6 showed a fanciful pair of code fragments that dealt with
counting I/O accesses to removable devices. These code fragments suffered from high overhead
on the fastpath (starting an I/O) due to the need to acquire a reader-writer lock. How would you
use RCU to provide excellent performance and scalability? (Keep in mind that the performance
of the common-case first code fragment that does I/O accesses is much more important than
that of the device-removal code fragment.) H

256 CHAPTER 9. DEFERRED PROCESSING

Table 9.6: Which Deferred Technique to Choose? (Overview)

Property Reference Counting Hazard Pointers Sequence Locks ~ RCU

Readers Slow and unscalable Fast and scalable Fast and scalable ~ Fast and scalable

Number of Protected Scalable Unscalable No protection Scalable

Objects

Duration of Protection Can be long Can be long No protection User must bound
duration

Need for Traversal If race with object If race with If race with any Never

Retries deletion object deletion update

9.6 Which to Choose?

Choose always the way that seems the best, however
rough it may be; custom will soon render it easy and
agreeable.

Pythagoras

Section 9.6.1 provides a high-level overview and then Section 9.6.2 provides a more
detailed view of the differences between the deferred-processing techniques presented
in this chapter. This discussion assumes a linked data structure that is large enough
that readers do not hold references from one traversal to another, and where elements
might be added to and removed from the structure at any location and at any time.
Section 9.6.3 then points out a few publicly visible production uses of hazard pointers,
sequence locking, and RCU. This discussion should help you to make an informed
choice between these techniques.

9.6.1 Which to Choose? (Overview)

Table 9.6 shows a few high-level properties that distinguish the deferred-reclamation
techniques from one another.

The “Readers” row summarizes the results presented in Figure 9.22, which shows
that all but reference counting are enjoy reasonably fast and scalable readers.

The “Number of Protected Objects” row evaluates each technique’s need for external
storage with which to record reader protection. RCU relies on quiescent states, and thus
needs no storage to represent readers, whether within or outside of the object. Reference
counting can use a single integer within each object in the structure, and no additional
storage is required. Hazard pointers require external-to-object pointers be provisioned,
and that there be sufficient pointers to handle the maximum number of objects that a
given CPU or thread might need to reference simultaneously. Of course, sequence locks
provides no pointer-traversal protection, which is why it is normally used on static data.

Quick Quiz 9.61: Why can’t users dynamically allocate the hazard pointers as they are
needed? W

The “Duration of Protection” describes constraints (if any) on how long a period of
time a user may protect a given object. Reference counting and hazard pointers can both
protect objects for extended time periods with no untoward side effects, but maintaining
an RCU reference to even one object prevents all other RCU from being freed. RCU

9.6. WHICH TO CHOOSE? 257

readers must therefore be relatively short in order to avoid running the system out of
memory. Again, sequence locks provide no pointer-traversal protection, which is why it
is normally used on static data.

The “Need for Traversal Retries” row tells whether a new reference to a given object
may be acquired unconditionally, as it can with RCU, or whether the reference acquisition
can fail, resulting in a retry operation, which is the case for reference counting, hazard
pointers, and sequence locks. In the case of reference counting and hazard pointers,
retries are only required if an attempt to acquire a reference to a given object while
that object is in the process of being deleted, a topic covered in more detail in the
next section. Sequence locking must of course retry its critical section should it run
concurrently with any update.

Quick Quiz 9.62: But don’t Linux-kernel kref reference counters allow guaranteed uncondi-
tional reference acquisition? H

Of course, different rows will have different levels of importance in different situations.
For example, if your current code is having read-side scalability problems with hazard
pointers, then it does not matter that hazard pointers can require retrying reference
acquisition because your current code already handles this. Similarly, if response-time
considerations already limit the duration of reader traversals, as is often the case in
kernels and low-level applications, then it does not matter that RCU has duration-limit
requirements because your code already meets them. In the same vein, if readers must
already write to the objects that they are traversing, the read-side overhead of reference
counters might not be so important. Finally, if the data to be protected is in statically
allocated variables, then sequence locking’s inability to protect pointers is irrelevant.

Nevertheless, this table should be of great help when choosing between these
techniques. But those wishing more detail should continue on to the next section.

9.6.2 Which to Choose? (Details)

Table 9.7 provides more-detailed rules of thumb that can help you choose among the
four deferred-processing techniques presented in this chapter.

As shown in the “Existence Guarantee” row, if you need existence guarantees for
linked data elements, you must use reference counting, hazard pointers, or RCU.
Sequence locks do not provide existence guarantees, instead providing detection of
updates, retrying any read-side critical sections that do encounter an update.

Of course, as shown in the “Updates and Readers Progress Concurrently” row, this
detection of updates implies that sequence locking does not permit updaters and readers
to make forward progress concurrently. After all, preventing such forward progress is
the whole point of using sequence locking in the first place! This situation points the
way to using sequence locking in conjunction with reference counting, hazard pointers,
or RCU in order to provide both existence guarantees and update detection. In fact, the
Linux kernel combines RCU and sequence locking in this manner during pathname
lookup.

The “Contention Among Readers”, “Reader Per-Critical-Section Overhead”, and
“Reader Per-Object Traversal Overhead” rows give a rough sense of the read-side
overhead of these techniques. The overhead of reference counting can be quite large,
with contention among readers along with a fully ordered read-modify-write atomic
operation required for each and every object traversed. Hazard pointers incur the
overhead of a memory barrier for each data element traversed, and sequence locks
incur the overhead of a pair of memory barriers for each attempt to execute the critical

258 CHAPTER 9. DEFERRED PROCESSING
Table 9.7: Which Deferred Technique to Choose? (Details)
Property Reference Counting Hazard Sequence RCU
Pointers Locks
Existence Guarantees Complex Yes No Yes
Updates and Readers Yes Yes No Yes
Progress Concurrently
Contention Among High None None None
Readers
Reader Per-Critical- N/A N/A Two Ranges from none
Section Overhead smp_mb () to two smp_mb ()
Reader Per-Object Read-modify-write atomic smp_mb () None, but None (volatile
Traversal Overhead operations, memory-barrier unsafe accesses)
instructions, and cache
misses
Reader Forward Progress ~ Lock free Lock free Blocking Bounded wait free
Guarantee
Reader Reference Can fail (conditional) Can fail Unsafe Cannot fail
Acquisition (conditional) (unconditional)
Memory Footprint Bounded Bounded Bounded Unbounded
Reclamation Forward Lock free Lock free N/A Blocking
Progress
Automatic Reclamation Yes No N/A No
Lines of Code 94 79 79 73

section. The overhead of RCU implementations vary from nothing to that of a pair
of memory barriers for each read-side critical section, thus providing RCU with the
best performance, particularly for read-side critical sections that traverse many data
elements. Of course, the read-side overhead of all deferred-processing variants can be
reduced by batching, so that each read-side operation covers more data.

Quick Quiz 9.63: But didn’t the answer to one of the quick quizzes in Section 9.3 say that
pairwise asymmetric barriers could eliminate the read-side smp_mb () from hazard pointers?

The “Reader Forward Progress Guarantee” row shows that only RCU has a bounded
wait-free forward-progress guarantee, which means that it can carry out a finite traversal
by executing a bounded number of instructions.

The “Reader Reference Acquisition” rows indicates that only RCU is capable of
unconditionally acquiring references. The entry for sequence locks is “Unsafe” because,
again, sequence locks detect updates rather than acquiring references. Reference
counting and hazard pointers both require that traversals be restarted from the beginning
if a given acquisition fails. To see this, consider a linked list containing objects A, B, C,
and D, in that order, and the following series of events:

1. A reader acquires a reference to object B.

2. An updater removes object B, but refrains from freeing it because the reader holds
a reference. The list now contains objects A, C, and D, and object B’s ->next
pointer is set to HAZPTR_POISON.

3. The updater removes object C, so that the list now contains objects A and D.
Because there is no reference to object C, it is immediately freed.

9.6. WHICH TO CHOOSE? 259

4. The reader tries to advance to the successor of the object following the now-removed
object B, but the poisoned ->next pointer prevents this. Which is a good thing,
because object B’s ->next pointer would otherwise point to the freelist.

5. The reader must therefore restart its traversal from the head of the list.

Thus, when failing to acquire a reference, a hazard-pointer or reference-counter
traversal must restart that traversal from the beginning. In the case of nested linked data
structures, for example, a tree containing linked lists, the traversal must be restarted
from the outermost data structure. This situation gives RCU a significant ease-of-use
advantage.

However, RCU’s ease-of-use advantage does not come for free, as can be seen in the
“Memory Footprint” row. RCU’s support of unconditional reference acquisition means
that it must avoid freeing any object reachable by a given RCU reader until that reader
completes. RCU therefore has an unbounded memory footprint, at least unless updates
are throttled. In contrast, reference counting and hazard pointers need to retain only
those data elements actually referenced by concurrent readers.

This tension between memory footprint and acquisition failures is sometimes resolved
within the Linux kernel by combining use of RCU and reference counters. RCU is
used for short-lived references, which means that RCU read-side critical sections can be
short. These short RCU read-side critical sections in turn mean that the corresponding
RCU grace periods can also be short, which limits the memory footprint. For the few
data elements that need longer-lived references, reference counting is used. This means
that the complexity of reference-acquisition failure only needs to be dealt with for those
few data elements: The bulk of the reference acquisitions are unconditional, courtesy
of RCU. See Section 13.2 for more information on combining reference counting with
other synchronization mechanisms.

The “Reclamation Forward Progress” row shows that hazard pointers can provide non-
blocking updates [Mic04, HLMO02]. Reference counting might or might not, depending
on the implementation. However, sequence locking cannot provide non-blocking
updates, courtesy of its update-side lock. RCU updaters must wait on readers, which
also rules out fully non-blocking updates. However, there are situations in which the
only blocking operation is a wait to free memory, which results in a situation that, for
many purposes, is as good as non-blocking [DMS*12].

As shown in the “Automatic Reclamation” row, only reference counting can automate
freeing of memory, and even then only for non-cyclic data structures.

Finally, the “Lines of Code” row shows the size of the Pre-BSD Routing Table
implementations, giving a rough idea of relative ease of use. That said, it is important to
note that the reference-counting and sequence-locking implementations are buggy, and
that a correct reference-counting implementation is considerably more complex [Val95,
MS95]. For its part, a correct sequence-locking implementation requires the addition of
some other synchronization mechanism, for example, hazard pointers or RCU, so that
sequence locking detects concurrent updates and the other mechanism provides safe
reference acquisition.

As more experience is gained using these techniques, both separately and in combi-
nation, the rules of thumb laid out in this section will need to be refined. However, this
section does reflect the current state of the art.

260 CHAPTER 9. DEFERRED PROCESSING

9.6.3 Which to Choose? (Production Use)

This section points out a few publicly visible production uses of hazard pointers, sequence
locking, and RCU. Reference counting is omitted, not because it is unimportant, but
rather because it is not only used pervasively, but heavily documented in textbooks
going back a half century. One of the hoped-for benefits of listing production uses of
these other techniques is to provide examples to study—or to find bugs in, as the case
may be.??

9.6.3.1 Production Uses of Hazard Pointers

In 2010, Keith Bostic added hazard pointers to WiredTiger [Bos10]. MongoDB 3.0,
released in 2015, included WiredTiger and thus hazard pointers.

In 2011, Samy Al Bahra added hazard pointers to the Concurrency Kit li-
brary [Bah11b].

In 2014, Maxim Khizhinsky added hazard pointers to libcds [Khil4].

In 2015, David Gwynne introduced shared reference pointers, a form of hazard
pointers, to OpenBSD [Gwy15].

In 2018, Maged Michael added hazard pointers to Facebook’s Folly library [Mic18],
where it is used heavily.

9.6.3.2 Production Uses of Sequence Locking

The Linux kernel added sequence locking in v2.5.60 [Cor03], having been generalized
from an ad-hoc technique used in x86’s implementation of the gettimeofday () system
call.

In 2011, Samy Al Bahra added sequence locking to the Concurrency Kit li-
brary [Bahllc].

A simple sequence locking implementation was added to jemalloc() in
2018 [Goll18a]. The eigen library also has a special-purpose queue that is managed by a
mechanism resembling sequence locking.?

9.6.3.3 Production Uses of RCU

IBM’s VM/XA is adopted passive serialization, a mechanism similar to RCU, some
time in the 1980s [HOS89].

DYNIX/ptx adopted RCU in 1993 [MS98a, SMO5].

The Linux kernel adopted Dipankar Sarma’s implementation of RCU in 2002 [Tor(02].

The userspace RCU project started in 2009 [Des09b].

The Knot DNS project started using the userspace RCU library in 2010 [Slo10].

In 2011, Samy Al Bahra added epochs (a form of RCU [Fra03, FHO7]) to the
Concurrency Kit library [Bah11a].

NetBSD began using the aforementioned passive serialization with v6.0 in
2012 [Thel2a]. Among other things, passive serialization is used in NetBSD packet
filter (NPF) [Ras14].

22 Kudos to Mathias Stearn, Matt Wilson, David Goldblatt, LiveJournal user fanf, Nadav
Har’El, Avi Kivity, Dmitry Vyukov, Raul Guitterez S., and Twitter user @peo3 for locating a
great many of these use cases.

23 https://bitbucket.org/eigen/eigen/src/
9fdbc9e653cladc64db1078fd2ec899c1e33balc/unsupported/Eigen/CXX11/
src/ThreadPool/RunQueue.h?at=default&fileviewer=file-view-default#

RunQueue.h-202

https://bitbucket.org/eigen/eigen/src/9fdbc9e653c1adc64db1078fd2ec899c1e33ba0c/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h?at=default&fileviewer=file-view-default#RunQueue.h-202
https://bitbucket.org/eigen/eigen/src/9fdbc9e653c1adc64db1078fd2ec899c1e33ba0c/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h?at=default&fileviewer=file-view-default#RunQueue.h-202
https://bitbucket.org/eigen/eigen/src/9fdbc9e653c1adc64db1078fd2ec899c1e33ba0c/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h?at=default&fileviewer=file-view-default#RunQueue.h-202
https://bitbucket.org/eigen/eigen/src/9fdbc9e653c1adc64db1078fd2ec899c1e33ba0c/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h?at=default&fileviewer=file-view-default#RunQueue.h-202

9.7. WHAT ABOUT UPDATES? 261

The OSv kernel added an RCU implementation in 2010 [Kiv13], later adding an
RCU-protected linked list [Kiv14b] and an RCU-protected hash table [Kiv14a].

In 2015, Maxim Khizhinsky added RCU to libeds [Khil5].

Mindaugas Rasiukevicius implemented libgsbr in 2016, which features QSBR and
epoch-based reclamation (EBR) [Ras16], both of which are types of implementations
of RCU.

Sheth et al. [SWS16] demonstrated the value of leveraging Go’s garbage collector to
provide RCU-like functionality, and the Go programming language provides a Value
type that can provide this functionality.’*

Matt Klein describes an RCU-like mechanism that is used in the Envoy Proxy [Kle17].

9.6.3.4 Summary of Production Uses

Perhaps the time will come when sequence locking, hazard pointers, and RCU are all as
heavily used and as well known as are reference counters. Until that time comes, the
current production uses of these mechanisms should help guide the choice of mechanism
as well as showing how best to apply each of them.

The next section discusses updates, a ticklish issue for many of the read-mostly
mechanisms described in this chapter.

9.7 What About Updates?

The only thing constant in life is change.

Francois de la Rochefoucauld

The deferred-processing techniques called out in this chapter are most directly applicable
to read-mostly situations, which begs the question “But what about updates?” After all,
increasing the performance and scalability of readers is all well and good, but it is only
natural to also want great performance and scalability for writers.

We have already seen one situation featuring high performance and scalability
for writers, namely the counting algorithms surveyed in Chapter 5. These algorithms
featured partially partitioned data structures so that updates can operate locally, while the
more-expensive reads must sum across the entire data structure. Silas Boyd-Wickhizer
has generalized this notion to produce OpLog, which he has applied to Linux-kernel
pathname lookup, VM reverse mappings, and the stat () system call [BW14].

Another approach, called “Disruptor”, is designed for applications that process
high-volume streams of input data. The approach is to rely on single-producer-single-
consumer FIFO queues, minimizing the need for synchronization [Sut13]. For Java
applications, Disruptor also has the virtue of minimizing use of the garbage collector.

And of course, where feasible, fully partitioned or “sharded” systems provide excellent
performance and scalability, as noted in Chapter 6.

The next chapter will look at updates in the context of several types of data structures.

2+ See https://golang.org/pkg/sync/atomic/#Value, particularly the “Example
(ReadMostly)”.

https://golang.org/pkg/sync/atomic/#Value

262 CHAPTER 9. DEFERRED PROCESSING

Bad programmers worry about the code. Good
programmers worry about data structures and their
relationships.

Linus Torvalds

Chapter 10

Data Structures

Efficient access to data is critically important, so that discussions of algorithms include
time complexity of the related data structures [CLRSO1]. However, for parallel programs,
measures of time complexity must also include concurrency effects. These effects can
be overwhelmingly large, as shown in Chapter 3, which means that concurrent data
structure designs must focus as much on concurrency as they do on sequential time
complexity. In other words, an important part of the data-structure relationships that
good parallel programmers must worry about is that portion related to concurrency.

Section 10.1 presents the motivating application used to evaluate the data structures
presented in this chapter.

As discussed in Chapter 6, an excellent way to achieve high scalability is partitioning.
This points the way to partitionable data structures, a topic taken up by Section 10.2.
Chapter 9 described how deferring some actions can greatly improve both performance
and scalability. Section 9.5 in particular showed how to tap the awesome power of
procrastination in pursuit of performance and scalability, a topic taken up by Section 10.3.

Not all data structures are partitionable. Section 10.4 looks at a mildly non-
partitionable example data structure. This section shows how to split it into read-mostly
and partitionable portions, enabling a fast and scalable implementation.

Because this chapter cannot delve into the details of every concurrent data structure
that has ever been used Section 10.5 provides a brief survey of the most common and
important ones. Although the best performance and scalability results design rather than
after-the-fact micro-optimization, it is nevertheless the case that micro-optimization has
an important place in achieving the absolute best possible performance and scalability.
This topic is therefore taken up in Section 10.6.

Finally, Section 10.7 presents a summary of this chapter.

263

264 CHAPTER 10. DATA STRUCTURES

10.1 Motivating Application

The art of doing mathematics consists in finding that
special case which contains all the germs of
generality.

David Hilbert

We will use the Schrédinger’s Zoo application to evaluate performance [McK13].
Schrodinger has a zoo containing a large number of animals, and he would like to track
them using an in-memory database with each animal in the zoo represented by a data
item in this database. Each animal has a unique name that is used as a key, with a variety
of data tracked for each animal.

Births, captures, and purchases result in insertions, while deaths, releases, and sales
result in deletions. Because Schrodinger’s zoo contains a large quantity of short-lived
animals, including mice and insects, the database must be able to support a high update
rate.

Those interested in Schrodinger’s animals can query them, however, Schrodinger
has noted extremely high rates of queries for his cat, so much so that he suspects that
his mice might be using the database to check up on their nemesis. This means that
Schrodinger’s application must be able to support a high rate of queries to a single data
element.

Please keep this application in mind as various data structures are presented.

10.2 Partitionable Data Structures

Finding a way to live the simple life today is the most
complicated task.

Henry A. Courtney, updated

There are a huge number of data structures in use today, so much so that there are
multiple textbooks covering them. This small section focuses on a single data structure,
namely the hash table. This focused approach allows a much deeper investigation of
how concurrency interacts with data structures, and also focuses on a data structure that
is heavily used in practice. Section 10.2.1 overviews of the design, and Section 10.2.2
presents the implementation. Finally, Section 10.2.3 discusses the resulting performance
and scalability.

10.2.1 Hash-Table Design

Chapter 6 emphasized the need to apply partitioning in order to attain respectable
performance and scalability, so partitionability must be a first-class criterion when
selecting data structures. This criterion is well satisfied by that workhorse of parallelism,
the hash table. Hash tables are conceptually simple, consisting of an array of hash
buckets. A hash function maps from a given element’s key to the hash bucket that this
element will be stored in. Each hash bucket therefore heads up a linked list of elements,
called a hash chain. When properly configured, these hash chains will be quite short,
permitting a hash table to access the element with a given key extremely efficiently.

10.2. PARTITIONABLE DATA STRUCTURES 265

Listing 10.1: Hash-Table Data Structures

1 struct ht_elem {
2 struct cds_list_head hte_next;
unsigned long hte_hash;

};

struct ht_bucket {
struct cds_list_head htb_head;
spinlock_t htb_lock;

® 9 U W

9 3}

10

11 struct hashtab {

12 unsigned long ht_nbuckets;

13 int (*ht_cmp) (struct ht_elem *htep, void *key);
14 struct ht_bucket ht_bkt[0];

15 };

Quick Quiz 10.1: But there are many types of hash tables, of which the chained hash tables
described here are but one type. Why the focus on chained hash tables? W

In addition, each bucket can be given its own lock, so that elements in different
buckets of the hash table may be added, deleted, and looked up completely independently.
A large hash table containing a large number of elements therefore offers excellent
scalability.

10.2.2 Hash-Table Implementation

Listing 10.1 (hash_bkt . c) shows a set of data structures used in a simple fixed-sized
hash table using chaining and per-hash-bucket locking, and Figure 10.1 diagrams how
they fit together. The hashtab structure (lines 11-15 in Listing 10.1) contains four ht _
bucket structures (lines 69 in Listing 10.1), with the ->ht_nbuckets field controlling
the number of buckets and the ->ht_cmp field holding the pointer to key-comparison
function. Each such bucket contains a list header -~>htb_head and a lock ->htb_lock.
The list headers chain ht_elem structures (lines 1—4 in Listing 10.1) through their ->
hte_next fields, and each ht_elem structure also caches the corresponding element’s
hash value in the ->hte_hash field. The ht_elem structure would be included in the
larger structure being placed in the hash table, and this larger structure might contain a
complex key.

The diagram shown in Figure 10.1 has bucket 0 with two elements and bucket 2 with
one.

Listing 10.2 shows mapping and locking functions. Lines 1 and 2 show the macro
HASH2BKT (), which maps from a hash value to the corresponding ht_bucket structure.
This macro uses a simple modulus: if more aggressive hashing is required, the caller
needs to implement it when mapping from key to hash value. The remaining two
functions acquire and release the ->htb_lock corresponding to the specified hash
value.

Listing 10.3 shows hashtab_lookup (), which returns a pointer to the element with
the specified hash and key if it exists, or NULL otherwise. This function takes both a hash
value and a pointer to the key because this allows users of this function to use arbitrary
keys and arbitrary hash functions. Line 8 maps from the hash value to a pointer to the
corresponding hash bucket. Each pass through the loop spanning lines 9-14 examines
one element of the bucket’s hash chain. Line 10 checks to see if the hash values match,
and if not, line 11 proceeds to the next element. Line 12 checks to see if the actual key

266 CHAPTER 10. DATA STRUCTURES

struct hashtab
—>ht_nbuckets = 4
->ht_cmp
—>ht_bk[0] struct ht_elem struct ht_elem

->htb_head —>hte_next —>hte_next
->htb_lock ->hte_hash ->hte_hash

—>ht_bki[1]

->htb_head
->htb_lock

->ht_bk[2] struct ht_elem

->htb_head —>hte_next
->htb_lock ->hte_hash

—>ht_bki[3]

->htb_head
->htb_lock

Figure 10.1: Hash-Table Data-Structure Diagram

Listing 10.2: Hash-Table Mapping and Locking
#define HASH2BKT(htp, h) \

1

2 (&(htp)->ht_bkt[h % (htp)->ht_nbuckets])

3

4 static void hashtab_lock(struct hashtab *htp,

5 unsigned long hash)

6 {

7 spin_lock (4HASH2BKT (htp, hash)->htb_lock);
8 F

9

10 static void hashtab_unlock(struct hashtab *htp,

11 unsigned long hash)

12 {

13 spin_unlock (§HASH2BKT (htp, hash)->htb_lock) ;
14}

matches, and if so, line 13 returns a pointer to the matching element. If no element
matches, line 15 returns NULL.

Quick Quiz 10.2: But isn’t the double comparison on lines 10—13 in Listing 10.3 inefficient
in the case where the key fits into an unsigned long? H

Listing 10.4 shows the hashtab_add () and hashtab_del () functions that add and
delete elements from the hash table, respectively.

The hashtab_add () function simply sets the element’s hash value on line 4, then
adds it to the corresponding bucket on lines 5 and 6. The hashtab_del () function
simply removes the specified element from whatever hash chain it is on, courtesy of the
doubly linked nature of the hash-chain lists. Before calling either of these two functions,
the caller is required to ensure that no other thread is accessing or modifying this same
bucket, for example, by invoking hashtab_lock () beforehand.

Listing 10.5 shows hashtab_alloc() and hashtab_free (), which do hash-table
allocation and freeing, respectively. Allocation begins on lines 8-9 with allocation of the
underlying memory. If line 10 detects that memory has been exhausted, line 11 returns
NULL to the caller. Otherwise, lines 12 and 13 initialize the number of buckets and
the pointer to key-comparison function, and the loop spanning lines 14—17 initializes
the buckets themselves, including the chain list header on line 15 and the lock on
line 16. Finally, line 18 returns a pointer to the newly allocated hash table. The
hashtab_free() function on lines 21-24 is straightforward.

10.2. PARTITIONABLE DATA STRUCTURES 267

Listing 10.3: Hash-Table Lookup

I struct ht_elem *

2 hashtab_lookup(struct hashtab *htp, unsigned long hash,
3 void *key)

{

struct ht_bucket *htb;
struct ht_elem *htep;

® 9 o u s

htb = HASH2BKT (htp, hash);

9 cds_list_for_each_entry(htep, &htb->htb_head, hte_next) {
10 if (htep->hte_hash != hash)

11 continue;

12 if (htp->ht_cmp(htep, key))

13 return htep;

14 ¥

15 return NULL;

16 }

Listing 10.4: Hash-Table Modification

void hashtab_add(struct hashtab *htp, unsigned long hash,
struct ht_elem *htep)

1
2
3 {

4 htep->hte_hash = hash;

5 cds_list_add(&htep->hte_next,

6 &HASH2BKT (htp, hash)->htb_head);
7}

8

9 void hashtab_del(struct ht_elem *htep)

10 {

11 cds_list_del_init(&htep->hte_next);
12}

10.2.3 Hash-Table Performance

The performance results for a single 28-core socket of a 2.1 GHz Intel Xeon system
using a bucket-locked hash table with 262,144 buckets are shown in Figure 10.2. The
performance does scale nearly linearly, but it falls a far short of the ideal performance
level, even at only 28 CPUs. Part of this shortfall is due to the fact that the lock
acquisitions and releases incur no cache misses on a single CPU, but do incur misses on
two or more CPUs.

And things only get worse with more CPUs, as can be seen in Figure 10.3. We do not
need an additional line to show ideal performance: The performance for 29 CPUs and
beyond is all too clearly worse than abysmal. This clearly underscores the dangers of
extrapolating performance from a modest number of CPUs.

Of course, one possible reason for the collapse in performance might be that more
hash buckets are needed. After all, we did not pad each hash bucket to a full cache line,
so there are a number of hash buckets per cache line. It is possible that the resulting
cache-thrashing comes into play at nine CPUs. We can test this by increasing the
number of hash buckets.

Quick Quiz 10.3: Instead of simply increasing the number of hash buckets, wouldn’t it be
better to cache-align the existing hash buckets? Wl

However, as can be seen in Figure 10.4, changing the number of buckets has almost no
effect: Scalability is still abysmal. In particular, we still see a sharp dropoff at 29 CPUs
and beyond. Clearly something else is going on.

The problem is that this is a multi-socket system, with CPUs 0-27 and 225-251
mapped to the first socket as shown in Figure 10.5. Test runs confined to the first
28 CPUs therefore perform quite well, but tests that involve socket 0’s CPUs 0-27 as

268

CHAPTER 10. DATA STRUCTURES

Listing 10.5: Hash-Table Allocation and Free

I struct hashtab *
2 hashtab_alloc(unsigned long nbuckets,
int (kcmp) (struct ht_elem *htep, void *key))

3

{

RSN RTINS

9
10
1
12
13
14
15
16
17
18
19 }
20

struct hashtab *htp;
int i;

htp = malloc(sizeof (*htp) +

nbuckets * sizeof (struct ht_bucket));

if (htp == NULL)

return NULL;
htp->ht_nbuckets = nbuckets;
htp->ht_cmp = cmp;
for (i = 0; i < nbuckets; i++) {

CDS_INIT_LIST_HEAD(&htp->ht_bkt[i].htb_head);

spin_lock_init (&htp->ht_bkt[i] .htb_lock);

}

return htp;

21 void hashtab_free(struct hashtab *htp)

2 {
23

24 }

free(htp) ;

1.4x108 y
1.2x108 |-

1x10% -

800000

600000 -

400000

Total Lookups per Millisecond

200000

0

. ideal

bucket

] | | | |

5

10

15

20

25

Number of CPUs (Threads)

Figure 10.2: Read-Only Hash-Table Performance For Schrodinger’s Zoo

well as socket 1’s CPU 28 incur the overhead of passing data across socket boundaries.
This can severely degrade performance, as was discussed in Section 3.2.1. In short, large
multi-socket systems require good locality of reference in addition to full partitioning.

Quick Quiz 10.4: Given the negative scalability of the Schrédinger’s Zoo application across
sockets, why not just run multiple copies of the application, with each copy having a subset of
the animals and confined to run on a single socket? H

One key property of the Schrodinger’s-zoo runs discussed thus far is that they are all
read-only. This makes the performance degradation due to lock-acquisition-induced
cache misses all the more painful. Even though we are not updating the underlying hash
table itself, we are still paying the price for writing to memory. Of course, if the hash
table was never going to be updated, we could dispense entirely with mutual exclusion.
This approach is quite straightforward and is left as an exercise for the reader. But
even with the occasional update, avoiding writes avoids cache misses, and allows the

10.3. READ-MOSTLY DATA STRUCTURES 269

250000

200000

150000

100000

50000

Total Lookups per Millisecond

0 [I I N N R
0 50 100150200250 300 350 400 450
Number of CPUs (Threads)

Figure 10.3: Read-Only Hash-Table Performance For Schrodinger’s Zoo, 448 CPUs

250000 1T T T T T T 1

200000

150000

100000

50000

Total Lookups per Millisecond

0 | | | | | | | |
0 50 100150200250 300350400450

Number of CPUs (Threads)

Figure 10.4: Read-Only Hash-Table Performance For Schrédinger’s Zoo, Varying
Buckets

read-mostly data to be replicated across all the caches, which in turn promotes locality
of reference.

The next section therefore examines optimizations that can be carried out in read-
mostly cases where updates are rare, but could happen at any time.

10.3 Read-Mostly Data Structures

Adapt the remedy to the disease.

Chinese proverb

Although partitioned data structures can offer excellent scalability, NUMA effects can
result in severe degradations of both performance and scalability. In addition, the
need for readers to exclude writers can degrade performance in read-mostly situations.
However, we can achieve both performance and scalability by using RCU, which
was introduced in Section 9.5. Similar results can be achieved using hazard pointers

270 CHAPTER 10. DATA STRUCTURES

Hyperthread
Socket 0 : 1

0-27 : 224-251

196-223 © 420-447

~N O R W = O
—
—
v
—_
W
O
W
W
7
(O8]
[*))
w

Figure 10.5: NUMA Topology of System Under Test

Listing 10.6: RCU-Protected Hash-Table Read-Side Concurrency Control

| static void hashtab_lock_lookup(struct hashtab *htp,
unsigned long hash)

{

rcu_read_lock();

[}

static void hashtab_unlock_lookup(struct hashtab *htp,
unsigned long hash)

~

rcu_read_unlock();

e S R - TR I SR

[

(hazptr.c) [Mic04], which will be included in the performance results shown in this
section [McK13].

10.3.1 RCU-Protected Hash Table Implementation

For an RCU-protected hash table with per-bucket locking, updaters use locking exactly
as described in Section 10.2, but readers use RCU. The data structures remain as shown
in Listing 10.1, and the HASH2BKT (), hashtab_lock(), and hashtab_unlock()
functions remain as shown in Listing 10.2. However, readers use the lighter-weight
concurrency-control embodied by hashtab_lock_lookup() and hashtab_unlock_
lookup() shown in Listing 10.6.

Listing 10.7 shows hashtab_lookup() for the RCU-protected per-bucket-locked
hash table. This is identical to that in Listing 10.3 except that cds_list_for_
each_entry() is replaced by cds_list_for_each_entry_rcu(). Both of these
primitives sequence down the hash chain referenced by htb->htb_head but cds_
list_for_each_entry_rcu() also correctly enforces memory ordering in case of
concurrent insertion. This is an important difference between these two hash-table
implementations: Unlike the pure per-bucket-locked implementation, the RCU protected
implementation allows lookups to run concurrently with insertions and deletions,
and RCU-aware primitives like cds_list_for_each_entry_rcu() are required to
correctly handle this added concurrency. Note also that hashtab_lookup()’s caller
must be within an RCU read-side critical section, for example, the caller must invoke
hashtab_lock_lookup () before invoking hashtab_lookup () (and of course invoke
hashtab_unlock_lookup() some time afterwards).

10.3. READ-MOSTLY DATA STRUCTURES 271

Listing 10.7: RCU-Protected Hash-Table Lookup

struct ht_elem *hashtab_lookup(struct hashtab *htp,

1

2 unsigned long hash,
3 void xkey)

4 {

5 struct ht_bucket *htb;

6 struct ht_elem *htep;

7

8 htb = HASH2BKT (htp, hash);

9 cds_list_for_each_entry_rcu(htep,

10 &htb->htb_head,
11 hte_next) {

12 if (htep->hte_hash != hash)

13 continue;

14 if (htp->ht_cmp(htep, key))

15 return htep;

16 }

17 return NULL;

18}

Listing 10.8: RCU-Protected Hash-Table Modification
void hashtab_add(struct hashtab *htp,

1

2 unsigned long hash,

3 struct ht_elem *htep)

4 {

5 htep->hte_hash = hash;

6 cds_list_add_rcu(&htep->hte_next,

7 &HASH2BKT (htp, hash)->htb_head) ;
8 }

9

10 void hashtab_del(struct ht_elem *htep)

n {

12 cds_list_del_rcu(&htep->hte_next);
13}

Quick Quiz 10.5: But if elements in a hash table can be deleted concurrently with lookups,
doesn’t that mean that a lookup could return a reference to a data element that was deleted
immediately after it was looked up? W

Listing 10.8 shows hashtab_add() and hashtab_del (), both of which are quite
similar to their counterparts in the non-RCU hash table shown in Listing 10.4. The
hashtab_add () function uses cds_list_add_rcu() instead of cds_list_add()
in order to ensure proper ordering when an element is added to the hash table at the
same time that it is being looked up. The hashtab_del () function uses cds_list_
del_rcu() instead of cds_list_del_init () to allow for the case where an element
is looked up just before it is deleted. Unlike cds_list_del_init(),cds_list_del_
rcu() leaves the forward pointer intact, so that hashtab_lookup () can traverse to the
newly deleted element’s successor.

Of course, after invoking hashtab_del (), the caller must wait for an RCU grace
period (e.g., by invoking synchronize_rcu()) before freeing or otherwise reusing
the memory for the newly deleted element.

10.3.2 RCU-Protected Hash Table Performance

Figure 10.6 shows the read-only performance of RCU-protected and hazard-pointer-
protected hash tables against the previous section’s per-bucket-locked implementation.
As you can see, both RCU and hazard pointers perform and scale and scalability much
better than per-bucket locking despite NUMA effects. The difference increases with
larger numbers of threads. Results from a globally locked implementation are also

272 CHAPTER 10. DATA STRUCTURES

1x108

L

1x107

ideal
1x108

100000 bucket

10000 |\ -\, global

Total Lookups per Millisecond

1000 L L AAAAHX L L AAAHH L L
1 10 100

Number of CPUs (Threads)

Figure 10.6: Read-Only RCU-Protected Hash-Table Performance For Schrodinger’s
Zoo

2.2x10’ T T T T T T 1
2x10’ E
1.8x107 |- 1
1.6x10° |- P
1.4x107 |- . ideal
1.2x107 | s
1x107 |- 1
8x10° |- .
6x10° | =
ato® |- RCU

) N v
0 e | | | | | | |
0 50 100150200250 300350400450

Number of CPUs (Threads)

Total Lookups per Millisecond

Figure 10.7: Read-Only RCU-Protected Hash-Table Performance For Schrédinger’s
Zoo0, Linear Scale

shown, and as expected the results are even worse than those of the per-bucket-locked
implementation. RCU does slightly better than hazard pointers, but the difference is not
so noticeable in this log-scale plot.

Figure 10.7 shows the same data on a linear scale. This drops the global-locking
trace into the x-axis, but allows the relative performance of RCU and hazard pointers
to be more readily discerned, including the extent to which they fail to achieve ideal
performance. Both show a change in slope at 224 CPUs, and this is due to hardware
multithreading. At 32 and fewer CPUs, each thread has a core to itself. In this regime,
RCU does better than does hazard pointers because the latter’s read-side memory
barriers result in dead time within the core. In short, RCU is better able to utilize a core
from a single hardware thread than is hazard pointers.

This situation changes above 224 CPUs. Because RCU is using more than half of
each core’s resources from a single hardware thread, RCU gains relatively little benefit
from the second hardware thread in each core. The slope of the hazard-pointers trace
also decreases at 224 CPUs, but less dramatically, because the second hardware thread

10.3. READ-MOSTLY DATA STRUCTURES 273

2.2x107 ‘
2x107 |- A
1.8x107 |- 7
1.6x107 |- P
1.4x107 | /,/’/ideal 4
1.2x107 | s -
1x10” | e 1
8x10° - 4 8
6x10° - e a
ax10® |- 7 QSBR,RCU___.....|

/ =

2x10% | 7 e hazptr

| | | | | | |

0
0 50 100 150200250 300 350 400 450
Number of CPUs (Threads)

Total Lookups per Millisecond

Figure 10.8: Read-Only RCU-Protected Hash-Table Performance For Schrodinger’s
Zoo including QSBR, Linear Scale

2.2x10’ T T T T T T 1
2x107 |-
1.8x107 |- -
1.6x107 |- -
1.4x107 |- ideal |
1.2x107 | -
1x107 -
8x10° |- -
6x10° |-
4x10° |-
2x108 |+ PP hazptr

o= 1 1 1 1
0 50 100150200250 300350400450

Number of CPUs (Threads)

Total Lookups per Millisecond

Figure 10.9: Read-Only RCU-Protected Hash-Table Performance For Schrodinger’s
Zoo including QSBR and Unsynchronized, Linear Scale

is able to fill in the time that the first hardware thread is stalled due to memory-barrier
latency. As we will see in later sections, this second-hardware-thread advantage depends
on the workload.

But why is RCU’s performance a factor of five less than ideal? One possibility is that
the per-thread counters manipulated by rcu_read_lock() and rcu_read_unlock()
are slowing things down. Figure 10.8 therefore adds the results for the QSBR variant
of RCU, whose read-side primitives do nothing. And although QSBR does perform
slightly better than does RCU, it is still about a factor of five short of ideal.

Figure 10.9 adds completely unsynchronized results, courtesy of the fact that this is a
read-only benchmark. And we see that even without any synchronization whatsoever,
performance falls short of ideal.

The problem is that this system has sockets with 28 cores, which have the modest
cache sizes shown in Figure 3.2 on page 36. Each hash bucket (struct ht_bucket)
occupies 56 bytes and each element (struct zoo_he) occupies 72 bytes for the RCU
and QSBR runs. The benchmark generating Figure 10.9 used 262,144 buckets and
up to 262,144 elements, for a total of 33,554,448 bytes, which not only overflows the

274 CHAPTER 10. DATA STRUCTURES

1x107
el 6 i :
< 1x10° T4
3 3 RCU-m
2 100000 | —‘
s 3 hazptr
& 10000 B
[%2] -
8 F
E F
£ 1000 L
(o] E
— E
T [= _
o 100 E-~ global E
10 i . |
1 10

Number of CPUs (Threads) Looking Up The Cat

Figure 10.10: Read-Side Cat-Only RCU-Protected Hash-Table Performance For Schro-
dinger’s Zoo at 64 CPUs

1,048,576-byte L2 caches by more than a factor of thirty, but is also uncomfortably
close to the L3 cache size of 40,370,176 bytes, especially given that this cache has
only 11 ways. This means that L2 cache collisions will be the rule and also that L3
cache collisions will not be uncommon, so that the resulting cache misses will degrade
performance. In this case, the bottleneck is not in the CPU, but rather in the hardware
memory system.

Additional evidence for this memory-system bottleneck may be found by examining
the unsynchronized code. This code does not need locks, so each hash bucket occupies
only 16 bytes compared to the 56 bytes for RCU and QSBR. signal-based). Similarly,
each hash-table element occupies only 56 bytes compared to the 72 bytes for RCU and
QSBR. So it is unsurprising that the single-CPU unsynchronized run performs up to
about half again faster than that of either QSBR or RCU.

Quick Quiz 10.6: How can we be so sure that the hash-table size is at fault here, especially
given that Figure 10.4 on page 269 shows that varying hash-table size has almost no effect?
Might the problem instead be something like false sharing? W

What if the memory footprint is reduced still further? Figure 9.22 on page 714 shows
that RCU attains very nearly ideal performance on the much smaller data structure
represented by the pre-BSD routing table.

Quick Quiz 10.7: The memory system is a serious bottleneck on this big system. Why bother
putting 448 CPUs on a system without giving them enough memory bandwidth to do something
useful??? M

As noted earlier, Schrodinger is surprised by the popularity of his cat [Sch35], but
recognizes the need to reflect this popularity in his design. Figure 10.10 shows the
results of 64-CPU runs, varying the number of CPUs that are doing nothing but looking
up the cat. Both RCU and hazard pointers respond well to this challenge, but bucket
locking scales negatively, eventually performing as badly as global locking. This should
not be a surprise because if all CPUs are doing nothing but looking up the cat, the lock
corresponding to the cat’s bucket is for all intents and purposes a global lock.

This cat-only benchmark illustrates one potential problem with fully partitioned
sharding approaches. Only the CPUs associated with the cat’s partition is able to access
the cat, limiting the cat-only throughput. Of course, a great many applications have

10.3. READ-MOSTLY DATA STRUCTURES 275

1x107 p——rrrr——rr— 3
%n;n=9;7;. ____________ J3CLJ E
6 T~ 7
2 X0 F hazptr -
Q F
(8] F
Q B
R N [RS
= 100000 k- bucket
= E
9] r
o
o 10000 k£
Q F
=] F
2 E
s F
4 1000 ¢ global E
100 1 AAAAAHX 1 AAAAAAA 1 1l

—_

10 100
Number of CPUs Doing Updates

Figure 10.11: Read-Side RCU-Protected Hash-Table Performance For Schrodinger’s
Zoo in the Presence of Updates

1x10°

100000

10000

1000

Updates per Millisecond

100

10 Lol Lol L
1 10 100

Number of CPUs Doing Updates

Figure 10.12: Update-Side RCU-Protected Hash-Table Performance For Schrodinger’s
Zoo

good load-spreading properties, and for these applications sharding works quite well.
However, sharding does not handle “hot spots” very well, with the hot spot exemplified
by Schrodinger’s cat being but one case in point.

If we were only ever going to read the data, we would not need any concurrency
control to begin with. Figure 10.11 therefore shows the effect of updates on readers.
At the extreme left-hand side of this graph, all but one of the CPUs are doing lookups,
while to the right all 448 CPUs are doing updates. For all four implementations, the
number of lookups per millisecond decreases as the number of updating CPUs increases,
of course reaching zero lookups per millisecond when all 448 CPUs are updating. Both
hazard pointers and RCU do well compared to per-bucket locking because their readers
do not increase update-side lock contention. RCU does well relative to hazard pointers
as the number of updaters increases due to the latter’s read-side memory barriers, which
incur greater overhead, especially in the presence of updates. It therefore seems likely
that modern hardware heavily optimizes memory-barrier execution, greatly reducing
memory-barrier overhead in the read-only case.

276 CHAPTER 10. DATA STRUCTURES

Where Figure 10.11 showed the effect of increasing update rates on lookups, Fig-
ure 10.12 shows the effect of increasing update rates on the updates themselves. Again,
at the left-hand side of the figure all but one of the CPUs are doing lookups and at the
right-hand side of the figure all 448 CPUs are doing updates. Hazard pointers and RCU
start off with a significant advantage because, unlike bucket locking, readers do not
exclude updaters. However, as the number of updating CPUs increases, update-side
overhead starts to make its presence known, first for RCU and then for hazard pointers.
Of course, all three of these implementations beat global locking.

Of course, it is quite possible that the differences in lookup performance are affected
by the differences in update rates. One way to check this is to artificially throttle the
update rates of per-bucket locking and hazard pointers to match that of RCU. Doing so
does not significantly improve the lookup performance of per-bucket locking, nor does
it close the gap between hazard pointers and RCU. However, removing the read-side
memory barriers from hazard pointers (thus resulting in an unsafe implementation) does
nearly close the gap between hazard pointers and RCU. Although this unsafe hazard-
pointer implementation will usually be reliable enough for benchmarking purposes, it is
absolutely not recommended for production use.

Quick Quiz 10.8: The dangers of extrapolating from 28 CPUs to 448 CPUs was made quite
clear in Section 10.2.3. But why should extrapolating up from 448 CPUs be any safer? W

10.3.3 RCU-Protected Hash Table Discussion

One consequence of the RCU and hazard-pointer implementations is that a pair of
concurrent readers might disagree on the state of the cat. For example, one of the readers
might have fetched the pointer to the cat’s data structure just before it was removed,
while another reader might have fetched this same pointer just afterwards. The first
reader would then believe that the cat was alive, while the second reader would believe
that the cat was dead.

Of course, this situation is completely fitting for Schrodinger’s cat, but it turns out
that it is quite reasonable for normal non-quantum cats as well.

The reason for this is that it is impossible to determine exactly when an animal is
born or dies.

To see this, let’s suppose that we detect a cat’s death by heartbeat. This raise the
question of exactly how long we should wait after the last heartbeat before declaring
death. It is clearly ridiculous to wait only one millisecond, because then a healthy
living cat would have to be declared dead—and then resurrected—more than once every
second. It is equally ridiculous to wait a full month, because by that time the poor cat’s
death would have made itself very clearly known via olfactory means.

Because an animal’s heart can stop for some seconds and then start up again, there
is a tradeoff between timely recognition of death and probability of false alarms. It is
quite possible that a pair of veterinarians might disagree on the time to wait between the
last heartbeat and the declaration of death. For example, one veterinarian might declare
death thirty seconds after the last heartbeat, while another might insist on waiting a full
minute. In this case, the two veterinarians would disagree on the state of the cat for the
second period of thirty seconds following the last heartbeat, as fancifully depicted in
Figure 10.13.

Of course, Heisenberg taught us to live with this sort of uncertainty [Hei27], which
is a good thing because computing hardware and software acts similarly. For example,
how do you know that a piece of computing hardware has failed? Often because it does

10.4. NON-PARTITIONABLE DATA STRUCTURES 277

| think the poor

Where there is a brain-
wave, there is a way!

Figure 10.13: Even Veterinarians Disagree!

not respond in a timely fashion. Just like the cat’s heartbeat, this results in a window of
uncertainty as to whether or not the hardware has failed.

Furthermore, most computing systems are intended to interact with the outside world.
Consistency with the outside world is therefore of paramount importance. However,
as we saw in Figure 9.26 on page 242, increased internal consistency can come at the
expense of external consistency. Techniques such as RCU and hazard pointers give up
some degree of internal consistency to attain improved external consistency.

In short, internal consistency is not a natural part of all problem domains, and often
incurs great expense in terms of performance, scalability, external consistency, or all of
the above.

10.4 Non-Partitionable Data Structures

Undertake something difficult, otherwise you will
never grow.

Ronald E. Osborn

Fixed-size hash tables are perfectly partitionable, but resizable hash tables pose parti-
tioning challenges when growing or shrinking, as fancifully depicted in Figure 10.14.
However, it turns out that it is possible to construct high-performance scalable RCU-
protected hash tables, as described in the following sections.

10.4.1 Resizable Hash Table Design

In happy contrast to the situation in the early 2000s, there are now no fewer than three
different types of scalable RCU-protected hash tables. The first (and simplest) was
developed for the Linux kernel by Herbert Xu [Xu10], and is described in the following
sections. The other two are covered briefly in Section 10.4.4.

The key insight behind the first hash-table implementation is that each data element
can have two sets of list pointers, with one set currently being used by RCU readers (as
well as by non-RCU updaters) and the other being used to construct a new resized hash

278 CHAPTER 10. DATA STRUCTURES

Asaak!

It's... growing!

I Pa rtitioner

Figure 10.14: Partitioning Problems

Bucket 0 | Bucket 1

\ 4
Links 0 Links 0 | Links 0 | Links 0
Links 1 Links 1 Links 1 Links 1
A B C D

Figure 10.15: Growing a Double-List Hash Table, State (a)

table. This approach allows lookups, insertions, and deletions to all run concurrently
with a resize operation (as well as with each other).

The resize operation proceeds as shown in Figures 10.15-10.18, with the initial
two-bucket state shown in Figure 10.15 and with time advancing from figure to figure.
The initial state uses the zero-index links to chain the elements into hash buckets. A
four-bucket array is allocated, and the one-index links are used to chain the elements

into these four new hash buckets. This results in state (b) shown in Figure 10.16, with
readers still using the original two-bucket array.

Bucket 0 | Bucket 1

\ 4
Links 0 Links 0 | Links 0 | Links 0
Links 1 Links 1 1 Links 1 Links 1
A B C D
7Y I U
j v
i e
1 ' -
H 1 -
[R S p——— g
1 Bucket O | Bucket1 | Bucket2 § Bucket3 I
[eppep—— | P | PR | PR 1

Figure 10.16: Growing a Double-List Hash Table, State (b)

Edition.2-rc3

10.4. NON-PARTITIONABLE DATA STRUCTURES 279

[= o g

1 BucketOTBuckeH 1

L
N

N,
.
\

|------

4
Links 0 Links 0 | Links 0 | Links 0
Links 1 Links 1 P Links 1 Links 1
A B Cc D

A

I Bucket 0 I Bucket 1 I Bucket 2 I Bucket 3 l

Figure 10.17: Growing a Double-List Hash Table, State (c)

Links 0 Links 0 | Links 0 | Links 0
Links 1 Links 1 P Links 1 Links 1
A B o] D

A

I Bucket 0 I Bucket 1 I Bucket 2 I Bucket 3 l

Figure 10.18: Growing a Double-List Hash Table, State (d)

The new four-bucket array is exposed to readers and then a grace-period operation
waits for all readers, resulting in state (c), shown in Figure 10.17. In this state, all
readers are using the new four-bucket array, which means that the old two-bucket array
may now be freed, resulting in state (d), shown in Figure 10.18.

This design leads to a relatively straightforward implementation, which is the subject
of the next section.

10.4.2 Resizable Hash Table Implementation

Resizing is accomplished by the classic approach of inserting a level of indirection,
in this case, the ht structure shown on lines 11-20 of Listing 10.9 (hash_resize.c).
The hashtab structure shown on lines 27-30 contains only a pointer to the current
ht structure along with a spinlock that is used to serialize concurrent attempts to
resize the hash table. If we were to use a traditional lock- or atomic-operation-based
implementation, this hashtab structure could become a severe bottleneck from both
performance and scalability viewpoints. However, because resize operations should be
relatively infrequent, we should be able to make good use of RCU.

The ht structure represents a specific size of the hash table, as specified by the
->ht_nbuckets field on line 12. The size is stored in the same structure containing
the array of buckets (->ht_bkt [] on line 19) in order to avoid mismatches between
the size and the array. The ->ht_resize_cur field on line 13 is equal to —1 unless
a resize operation is in progress, in which case it indicates the index of the bucket
whose elements are being inserted into the new hash table, which is referenced by the
->ht_new field on line 14. If there is no resize operation in progress, —>ht_new is NULL.
Thus, a resize operation proceeds by allocating a new ht structure and referencing it
via the ->ht_new pointer, then advancing ->ht_resize_cur through the old table’s

280 CHAPTER 10. DATA STRUCTURES

Listing 10.9: Resizable Hash-Table Data Structures

struct ht_elem {
struct rcu_head rh;
struct cds_list_head hte_next[2];

};

struct ht_bucket {
struct cds_list_head htb_head;
spinlock_t htb_lock;

® 9 U AW —

9 };

10

11 struct ht {

12 long ht_nbuckets;

13 long ht_resize_cur;

14 struct ht *ht_new;

15 int ht_idx;

16 int (*ht_cmp) (struct ht_elem *htep, void *key);
17 unsigned long (*ht_gethash) (void *key);
18 void *(*ht_getkey) (struct ht_elem *htep);
19 struct ht_bucket ht_bkt[0];

20 };

21

22 struct ht_lock_state {

23 struct ht_bucket *hbp[2];

2 int hls_idx[2];

25 };

26

27 struct hashtab {

28 struct ht *xht_cur;

29 spinlock_t ht_lock;

30 };

buckets. When all the elements have been added to the new table, the new table is linked
into the hashtab structure’s ->ht_cur field. Once all old readers have completed, the
old hash table’s ht structure may be freed.

The ->ht_idx field on line 15 indicates which of the two sets of list pointers are
being used by this instantiation of the hash table, and is used to index the ->hte_next []
array in the ht_elem structure on line 3.

The ->ht_cmp(), ->ht_gethash(), and ->ht_getkey () fields on lines 16-18
collectively define the per-element key and the hash function. The ->ht_cmp () function
compares a specified key with that of the specified element, the ->ht_gethash()
calculates the specified key’s hash, and ->ht_getkey () extracts the key from the
enclosing data element.

The ht_lock_state shown on lines 22-25 is used to communicate lock state from
a new hashtab_lock_mod() to hashtab_add(), hashtab_del (), and hashtab_
unlock_mod (). This state prevents the algorithm from being redirected to the wrong
bucket during concurrent resize operations.

The ht_bucket structure is the same as before, and the ht_elem structure differs
from that of previous implementations only in providing a two-element array of list
pointer sets in place of the prior single set of list pointers.

In a fixed-sized hash table, bucket selection is quite straightforward: Simply transform
the hash value to the corresponding bucket index. In contrast, when resizing, it is also
necessary to determine which of the old and new sets of buckets to select from. If the
bucket that would be selected from the old table has already been distributed into the
new table, then the bucket should be selected from the new table as well as from the old
table. Conversely, if the bucket that would be selected from the old table has not yet
been distributed, then the bucket should be selected from the old table.

10.4. NON-PARTITIONABLE DATA STRUCTURES 281

Listing 10.10: Resizable Hash-Table Bucket Selection

1 static struct ht_bucket *

2 ht_get_bucket(struct ht *htp, void *key,
3 long *b, unsigned long *h)
{

unsigned long hash = htp->ht_gethash(key) ;

*b = hash % htp->ht_nbuckets;

if (h)

9 *h = hash;

10 return &htp->ht_bkt [*b];

1 r

12

13 static struct ht_elem *

14 ht_search_bucket(struct ht *htp, void *key)

RSN RTINS

15 {

16 long b;

17 struct ht_elem *htep;

18 struct ht_bucket *htbp;

19

20 htbp = ht_get_bucket (htp, key, &b, NULL);

21 cds_list_for_each_entry_rcu(htep,

22 &htbp->htb_head,
23 hte_next [htp->ht_idx]) {
2 if (htp->ht_cmp(htep, key))

25 return htep;

26 }

27 return NULL;

28 }

Bucket selection is shown in Listing 10.10, which shows ht_get_bucket () on
lines 1-11 and ht_search_bucket () on lines 13-28. The ht_get_bucket () func-
tion returns a reference to the bucket corresponding to the specified key in the specified
hash table, without making any allowances for resizing. It also stores the bucket index
corresponding to the key into the location referenced by parameter b on line 7, and the
corresponding hash value corresponding to the key into the location referenced by pa-
rameter h (if non-NULL) on line 9. Line 10 then returns a reference to the corresponding
bucket.

The ht_search_bucket () function searches for the specified key within the speci-
fied hash-table version. Line 20 obtains a reference to the bucket corresponding to the
specified key. The loop spanning lines 21-26 searches that bucket, so that if line 24
detects a match, line 25 returns a pointer to the enclosing data element. Otherwise, if
there is no match, line 27 returns NULL to indicate failure.

Quick Quiz 10.9: How does the code in Listing 10.10 protect against the resizing process
progressing past the selected bucket? H

This implementation of ht_get_bucket () and ht_search_bucket () permits
lookups and modifications to run concurrently with a resize operation.

Read-side concurrency control is provided by RCU as was shown in Listing 10.6, but
the update-side concurrency-control functions hashtab_lock_mod () and hashtab_
unlock_mod () must now deal with the possibility of a concurrent resize operation as
shown in Listing 10.11.

The hashtab_lock_mod() spans lines 1-25 in the listing. Line 10 enters an RCU
read-side critical section to prevent the data structures from being freed during the
traversal, line 11 acquires a reference to the current hash table, and then line 12 obtains a
reference to the bucket in this hash table corresponding to the key. Line 13 acquires that
bucket’s lock, which will prevent any concurrent resizing operation from distributing
that bucket, though of course it will have no effect if that bucket has already been

282 CHAPTER 10. DATA STRUCTURES

Listing 10.11: Resizable Hash-Table Update-Side Concurrency Control

1 static void
2 hashtab_lock_mod(struct hashtab *htp_master, void *key,

3 struct ht_lock_state *lsp)

4 {

5 long b;

6 unsigned long h;

7 struct ht *htp;

8 struct ht_bucket *htbp;

9

10 rcu_read_lock();

11 htp = rcu_dereference(htp_master->ht_cur);
12 htbp = ht_get_bucket (htp, key, &b, &h);
13 spin_lock (&htbp->htb_lock) ;

14 1sp->hbp[0] = htbp;

15 1sp->hls_idx[0] = htp->ht_idx;

16 if (b > READ_ONCE(htp->ht_resize_cur)) {
17 1sp->hbp[1] = NULL;

18 return;

19 }

20 htp = rcu_dereference (htp->ht_new);

21 htbp = ht_get_bucket (htp, key, &b, &h);
2 spin_lock(&htbp->htb_lock);

23 1sp->hbp[1] = htbp;

24 1sp->hls_idx[1] = htp->ht_idx;

25 }

27 static void
28 hashtab_unlock_mod(struct ht_lock_state *lsp)

29 {

30 spin_unlock(&lsp->hbp[0]->htb_lock) ;

31 if (lsp->hbp[1])

32 spin_unlock(&1lsp->hbp[1]->htb_lock) ;
33 rcu_read_unlock();

34}

distributed. Lines 14-15 store the bucket pointer and pointer-set index into their
respective fields in the ht_lock_state structure, which communicates the information
to hashtab_add (), hashtab_del(), and hashtab_unlock_mod(). Line 16 then
checks to see if a concurrent resize operation has already distributed this bucket across
the new hash table, and if not, line 17 indicates that there is no already-resized hash
bucket and line 18 returns with the selected hash bucket’s lock held (thus preventing
a concurrent resize operation from distributing this bucket) and also within an RCU
read-side critical section.

Otherwise, a concurrent resize operation has already distributed this bucket, so
line 20 proceeds to the new hash table, line 21 selects the bucket corresponding to
the key, and line 22 acquires the bucket’s lock. Lines 23-24 store the bucket pointer
and pointer-set index into their respective fields in the ht_lock_state structure,
which again communicates this information to hashtab_add (), hashtab_del (), and
hashtab_unlock_mod (). Because this bucket has already been resized and because
hashtab_add() and hashtab_del () affect both the old and the new ht_bucket
structures, two locks are held, one on each of the two buckets. Additionally, both
elements of each array in ht_lock_state structure are used, with the [0] element
pertaining to the old ht_bucket structure and the [1] element pertaining to the new
structure. Once again, hashtab_lock_mod () exits within an RCU read-side critical
section.

The hashtab_unlock_mod () function releases the lock(s) acquired by hashtab_
lock_mod (). Line 30 releases the lock on the old ht_bucket structure. In the unlikely
event that line 31 determines that a resize operation is in progress, line 32 releases the

10.4. NON-PARTITIONABLE DATA STRUCTURES 283

Listing 10.12: Resizable Hash-Table Access Functions

1 struct ht_elem *
2 hashtab_lookup(struct hashtab *htp_master, void *key)

3 {

4 struct ht *htp;

5 struct ht_elem *htep;

6

7 htp = rcu_dereference(htp_master—>ht_cur);

3 htep = ht_search_bucket (htp, key);

9 return htep;

10 ¥

1

12 void hashtab_add(struct ht_elem *htep,

13 struct ht_lock_state *1sp)

14 {

15 struct ht_bucket *htbp = 1lsp->hbpl[0];

16 int i = lsp->hls_idx[0];

17

18 cds_list_add_rcu(&htep->hte_next[i], &htbp->htb_head);
19 if ((htbp = 1sp->hbp[1])) {

20 cds_list_add_rcu(&htep->hte_next[!i], &htbp->htb_head);
21 }

2}

23

24 void hashtab_del(struct ht_elem *htep,

25 struct ht_lock_state *1sp)

2 {

27 int i = 1sp->hls_idx[0];

28

29 cds_list_del_rcu(&htep->hte_next[i]);

30 if (1sp->hbp[1])

31 cds_list_del_rcu(&htep->hte_next[!i]);
2}

lock on the new ht_bucket structure. Either way, line 33 exits the RCU read-side
critical section.

Quick Quiz 10.10: Suppose that one thread is inserting an element into the hash table during
a resize operation. What prevents this insertion from being lost due to a subsequent resize
operation completing before the insertion does? M

Now that we have bucket selection and concurrency control in place, we are ready to
search and update our resizable hash table. The hashtab_lookup(), hashtab_add(),
and hashtab_del () functions are shown in Listing 10.12.

The hashtab_lookup() function on lines 1-10 of the listing does hash lookups.
Line 7 fetches the current hash table and line 8 searches the bucket corresponding to the
specified key. Line 9 returns a pointer to the searched-for element or NULL when the
search fails.

Quick Quiz 10.11: The hashtab_lookup() function in Listing 10.12 does not account for
concurrent resize operations. Doesn’t this mean that readers might miss an element that was
added during a resize operation? W

The hashtab_add () function on lines 12-22 of the listing adds new data elements
to the hash table. Line 15 picks up the current ht_bucket structure into which the
new element is to be added, and line 16 picks up the index of the pointer pair. Line 18
adds the new element to the current hash bucket. If line 19 determines that this bucket
has been distributed to a new version of the hash table, then line 20 also adds the new
element to the corresponding new bucket. The caller is required to handle concurrency,
for example, by invoking hashtab_lock_mod () before the call to hashtab_add ()
and invoking hashtab_unlock_mod () afterwards.

284 CHAPTER 10. DATA STRUCTURES

Listing 10.13: Resizable Hash-Table Resizing

int hashtab_resize(struct hashtab xhtp_master,

1

2 unsigned long nbuckets,

3 int (*cmp) (struct ht_elem xhtep, void *key),
4 unsigned long (*gethash) (void *key),

5 void *(*getkey) (struct ht_elem *htep))

6 {

7 struct ht *htp;

8 struct ht *htp_new;

9 int i;

10 int idx;

11 struct ht_elem *htep;

12 struct ht_bucket *htbp;

13 struct ht_bucket *htbp_new;

14 long b;

15

16 if (!spin_trylock(&htp_master->ht_lock))

17 return -EBUSY;

18 htp = htp_master->ht_cur;

19 htp_new = ht_alloc(nbuckets,

20 cmp ? cmp : htp->ht_cmp,

21 gethash ? gethash : htp->ht_gethash,
2 getkey 7 getkey : htp->ht_getkey);
23 if (htp_new == NULL) {

24 spin_unlock(&htp_master->ht_lock);

25 return -ENOMEM;

26 }

27 idx = htp->ht_idx;

28 htp_new->ht_idx = !idx;

29 rcu_assign_pointer (htp->ht_new, htp_new);

30 synchronize_rcu();

31 for (i = 0; i < htp->ht_nbuckets; i++) {

ko) htbp = &htp->ht_bkt[i];

33 spin_lock (&htbp->htb_lock) ;

34 cds_list_for_each_entry(htep, &htbp->htb_head, hte_next[idx]) {
35 htbp_new = ht_get_bucket (htp_new, htp_new->ht_getkey(htep), &b, NULL);
36 spin_lock(&htbp_new->htb_lock);

37 cds_list_add_rcu(&htep->hte_next[!idx], &htbp_new->htb_head);
38 spin_unlock(&htbp_new->htb_lock) ;

39 }

40 WRITE_ONCE (htp->ht_resize_cur, i);

41 spin_unlock(&htbp->htb_lock) ;

2 ¥

43 rcu_assign_pointer (htp_master->ht_cur, htp_new);

44 synchronize_rcu();

45 spin_unlock(&htp_master->ht_lock) ;

46 free(htp) ;

47 return O;

48 }

The hashtab_del () function on lines 24-32 of the listing removes an existing
element from the hash table. Line 27 picks up the index of the pointer pair and line 29
removes the specified element from the current table. If line 30 determines that this
bucket has been distributed to a new version of the hash table, then line 31 also removes
the specified element from the corresponding new bucket. As with hashtab_add (),
the caller is responsible for concurrency control and this concurrency control suffices
for synchronizing with a concurrent resize operation.

Quick Quiz 10.12: The hashtab_add () and hashtab_del () functions in Listing 10.12
can update two hash buckets while a resize operation is progressing. This might cause poor
performance if the frequency of resize operation is not negligible. Isn’t it possible to reduce the
cost of updates in such cases? H

The actual resizing itself is carried out by hashtab_resize, shown in Listing 10.13
on page 284. Line 16 conditionally acquires the top-level ->ht_lock, and if this
acquisition fails, line 17 returns ~EBUSY to indicate that a resize is already in progress.

10.4. NON-PARTITIONABLE DATA STRUCTURES 285

Otherwise, line 18 picks up a reference to the current hash table, and lines 19-22
allocate a new hash table of the desired size. If a new set of hash/key functions have
been specified, these are used for the new table, otherwise those of the old table are
preserved. If line 23 detects memory-allocation failure, line 24 releases ->ht_lock
and line 25 returns a failure indication.

Line 27 picks up the current table’s index and line 28 stores its inverse to the new
hash table, thus ensuring that the two hash tables avoid overwriting each other’s linked
lists. Line 29 then starts the bucket-distribution process by installing a reference to the
new table into the ->ht_new field of the old table. Line 30 ensures that all readers who
are not aware of the new table complete before the resize operation continues.

Each pass through the loop spanning lines 31-42 distributes the contents of one of
the old hash table’s buckets into the new hash table. Line 32 picks up a reference to the
old table’s current bucket and line 33 acquires that bucket’s spinlock.

Quick Quiz 10.13: In the hashtab_resize() function in Listing 10.13, what guarantees
that the update to ->ht_new on line 29 will be seen as happening before the update to ->ht _
resize_cur on line 40 from the perspective of hashtab_add() and hashtab_del()? In
other words, what prevents hashtab_add () and hashtab_del () from dereferencing a NULL
pointer loaded from ->ht_new? H

Each pass through the loop spanning lines 34-39 adds one data element from the
current old-table bucket to the corresponding new-table bucket, holding the new-table
bucket’s lock during the add operation. Line 40 updates ->ht_resize_cur to indicate
that this bucket has been distributed. Finally, line 41 releases the old-table bucket lock.

Execution reaches line 43 once all old-table buckets have been distributed across
the new table. Line 43 installs the newly created table as the current one, and line 44
waits for all old readers (who might still be referencing the old table) to complete. Then
line 45 releases the resize-serialization lock, line 46 frees the old hash table, and finally
line 47 returns success.

[Quick Quiz 10.14: Why is there a WRITE_ONCE () on line 40 in Listing 10.13? H]

10.4.3 Resizable Hash Table Discussion

Figure 10.19 compares resizing hash tables to their fixed-sized counterparts for 262,144
and 2,097,152 elements in the hash table. The figure shows three traces for each
element count, one for a fixed-size 262,144-bucket hash table, another for a fixed-size
524,288-bucket hash table, and a third for a resizable hash table that shifts back and
forth between 262,144 and 524,288 buckets, with a one-millisecond pause between each
resize operation.

The uppermost three traces are for the 262,144-element hash table. The dashed trace
corresponds to the two fixed-size hash tables, and the solid trace to the resizable hash
table. In this case, the short hash chains cause normal lookup overhead to be so low
that the overhead of resizing dominates over most of the range. In particular, the entire
hash table fits into L3 cache.

The lower three traces are for the 2,097,152-element hash table. The upper trace
corresponds to the 262,144-bucket fixed-size hash table, the trace in the middle for
low CPU counts and at the bottom for high CPU counts to the resizable hash table,
and the other trace to the 524,288-bucket fixed-size hash table. The fact that there
are now an average of eight elements per bucket can only be expected to produce a
sharp decrease in performance, as in fact is shown in the graph. But worse yet, the

286 CHAPTER 10. DATA STRUCTURES

1X107 E T T TTTTTT‘ T T TTTTTT‘ T T‘};—
5 B]
s 1x10° F E
O - 3
@ F 262144 ~ 9
@2 N E
= B i
s 100000 ~Z =
o - . e 3
@ o 1
=] L g
S
& 10000 2,097,152 E

1000 L L 1111111 L L 1111111 L -

1 10 100

Number of CPUs (Threads)

Figure 10.19: Overhead of Resizing Hash Tables Between 262,144 and 524,288
Buckets vs. Total Number of Elements

hash-table elements occupy 128 MB, which overflows each socket’s 39 MB L3 cache,
with performance consequences analogous to those described in Section 3.2.2. The
resulting cache overflow means that the memory system is involved even for a read-only
benchmark, and as you can see from the sublinear portions of the lower three traces, the
memory system can be a serious bottleneck.

Quick Quiz 10.15: How much of the difference in performance between the large and small
hash tables shown in Figure 10.19 was due to long hash chains and how much was due to
memory-system bottlenecks? W

Referring to the last column of Table 3.1, we recall that the first 28 CPUs are in
the first socket, on a one-CPU-per-core basis, which explains the sharp decrease in
performance of the resizable hash table beyond 28 CPUs. Sharp though this decrease
is, please recall that it is due to constant resizing back and forth. It would clearly be
better to resize once to 524,288 buckets, or, even better, do a single eight-fold resize to
2,097,152 elements, thus dropping the average number of elements per bucket down to
the level enjoyed by the runs producing the upper three traces.

The key point from this data is that the RCU-protected resizable hash table performs
and scales almost as well as does its fixed-size counterpart. The performance during
an actual resize operation of course suffers somewhat due to the cache misses causes
by the updates to each element’s pointers, and this effect is most pronounced when the
memory system becomes a bottleneck. This indicates that hash tables should be resized
by substantial amounts, and that hysteresis should be applied to prevent performance
degradation due to too-frequent resize operations. In memory-rich environments,
hash-table sizes should furthermore be increased much more aggressively than they are
decreased.

Another key point is that although the hashtab structure is non-partitionable, it
is also read-mostly, which suggests the use of RCU. Given that the performance and
scalability of this resizable hash table is very nearly that of RCU-protected fixed-sized
hash tables, we must conclude that this approach was quite successful.

Finally, it is important to note that insertions, deletions, and lookups can proceed
concurrently with a resize operation. This concurrency is critically important when

10.4. NON-PARTITIONABLE DATA STRUCTURES 287

Figure 10.20: Shrinking a Relativistic Hash Table

resizing large hash tables, especially for applications that must meet severe response-time
constraints.

Of course, the ht_elem structure’s pair of pointer sets does impose some memory
overhead, which is taken up in the next section.

10.4.4 Other Resizable Hash Tables

One shortcoming of the resizable hash table described earlier in this section is memory
consumption. Each data element has two pairs of linked-list pointers rather than just
one. Is it possible to create an RCU-protected resizable hash table that makes do with
just one pair?

It turns out that the answer is “yes”. Josh Triplett et al. [TMWI11] produced a
relativistic hash table that incrementally splits and combines corresponding hash chains
so that readers always see valid hash chains at all points during the resizing operation.
This incremental splitting and combining relies on the fact that it is harmless for a reader
to see a data element that should be in some other hash chain: When this happens, the
reader will simply ignore the extraneous data element due to key mismatches.

The process of shrinking a relativistic hash table by a factor of two is shown in
Figure 10.20, in this case shrinking a two-bucket hash table into a one-bucket hash table,
otherwise known as a linear list. This process works by coalescing pairs of buckets

288 CHAPTER 10. DATA STRUCTURES

in the old larger hash table into single buckets in the new smaller hash table. For this
process to work correctly, we clearly need to constrain the hash functions for the two
tables. One such constraint is to use the same underlying hash function for both tables,
but to throw out the low-order bit when shrinking from large to small. For example,
the old two-bucket hash table would use the two top bits of the value, while the new
one-bucket hash table could use the top bit of the value. In this way, a given pair of
adjacent even and odd buckets in the old large hash table can be coalesced into a single
bucket in the new small hash table, while still having a single hash value cover all of the
elements in that single bucket.

The initial state is shown at the top of the figure, with time advancing from top to
bottom, starting with initial state (a). The shrinking process begins by allocating the
new smaller array of buckets, and having each bucket of this new smaller array reference
the first element of one of the buckets of the corresponding pair in the old large hash
table, resulting in state (b).

Then the two hash chains are linked together, resulting in state (c). In this state,
readers looking up an even-numbered element see no change, and readers looking up
elements 1 and 3 likewise see no change. However, readers looking up some other odd
number will also traverse elements O and 2. This is harmless because any odd number
will compare not-equal to these two elements. There is some performance loss, but on
the other hand, this is exactly the same performance loss that will be experienced once
the new small hash table is fully in place.

Next, the new small hash table is made accessible to readers, resulting in state (d).
Note that older readers might still be traversing the old large hash table, so in this state
both hash tables are in use.

The next step is to wait for all pre-existing readers to complete, resulting in state (e).
In this state, all readers are using the new small hash table, so that the old large hash
table’s buckets may be freed, resulting in the final state (f).

Growing a relativistic hash table reverses the shrinking process, but requires more
grace-period steps, as shown in Figure 10.21. The initial state (a) is at the top of this
figure, with time advancing from top to bottom.

We start by allocating the new large two-bucket hash table, resulting in state (b).
Note that each of these new buckets references the first element destined for that bucket.
These new buckets are published to readers, resulting in state (c). After a grace-period
operation, all readers are using the new large hash table, resulting in state (d). In this
state, only those readers traversing the even-values hash bucket traverse element O,
which is therefore now colored white.

At this point, the old small hash buckets may be freed, although many implementations
use these old buckets to track progress “unzipping” the list of items into their respective
new buckets. The last even-numbered element in the first consecutive run of such
elements now has its pointer-to-next updated to reference the following even-numbered
element. After a subsequent grace-period operation, the result is state (¢). The vertical
arrow indicates the next element to be unzipped, and element 1 is now colored black to
indicate that only those readers traversing the odd-values hash bucket may reach it.

Next, the last odd-numbered element in the first consecutive run of such elements
now has its pointer-to-next updated to reference the following odd-numbered element.
After a subsequent grace-period operation, the result is state (f). A final unzipping
operation (including a grace-period operation) results in the final state (g).

In short, the relativistic hash table reduces the number of per-element list pointers
at the expense of additional grace periods incurred during resizing. These additional

10.4. NON-PARTITIONABLE DATA STRUCTURES 289

Figure 10.21: Growing a Relativistic Hash Table

grace periods are usually not a problem because insertions, deletions, and lookups may
proceed concurrently with a resize operation.

It turns out that it is possible to reduce the per-element memory overhead from a pair
of pointers to a single pointer, while still retaining O (1) deletions. This is accomplished
by augmenting split-order list [SS06] with RCU protection [Des09b, MDJ13a]. The
data elements in the hash table are arranged into a single sorted linked list, with each
hash bucket referencing the first element in that bucket. Elements are deleted by setting
low-order bits in their pointer-to-next fields, and these elements are removed from the
list by later traversals that encounter them.

This RCU-protected split-order list is complex, but offers lock-free progress guarantees
for all insertion, deletion, and lookup operations. Such guarantees can be important
in real-time applications. An implementation is available from recent versions of the
userspace RCU library [Des09b].

290 CHAPTER 10. DATA STRUCTURES

10.5 Other Data Structures

All life is an experiment. The more experiments you
make the better.

Ralph Waldo Emerson

The preceding sections have focused on data structures that enhance concurrency due
to partitionability (Section 10.2), efficient handling of read-mostly access patterns
(Section 10.3), or application of read-mostly techniques to avoid non-partitionability
(Section 10.4). This section gives a brief review of other data structures.

One of the hash table’s greatest advantages for parallel use is that it is fully partitionable,
at least while not being resized. One way of preserving the partitionability and the
size independence is to use a radix tree, which is also called a trie. Tries partition
the search key, using each successive key partition to traverse the next level of the
trie. As such, a trie can be thought of as a set of nested hash tables, thus providing
the required partitionability. One disadvantage of tries is that a sparse key space can
result in inefficient use of memory. There are a number of compression techniques that
may be used to work around this disadvantage, including hashing the key value to a
smaller keyspace before the traversal [ON0O6]. Radix trees are heavily used in practice,
including in the Linux kernel [Pig06].

One important special case of both a hash table and a trie is what is perhaps the oldest
of data structures, the array and its multi-dimensional counterpart, the matrix. The fully
partitionable nature of matrices is exploited heavily in concurrent numerical algorithms.

Self-balancing trees are heavily used in sequential code, with AVL trees and red-
black trees being perhaps the most well-known examples [CLRSO01]. Early attempts
to parallelize AVL trees were complex and not necessarily all that efficient [ElI80],
however, more recent work on red-black trees provides better performance and scalability
by using RCU for readers and hashed arrays of locks! to protect reads and updates,
respectively [HW11, HW13]. It turns out that red-black trees rebalance aggressively,
which works well for sequential programs, but not necessarily so well for parallel use.
Recent work has therefore made use of RCU-protected “bonsai trees” that rebalance less
aggressively [CKZ12], trading off optimal tree depth to gain more efficient concurrent
updates.

Concurrent skip lists lend themselves well to RCU readers, and in fact represents an
early academic use of a technique resembling RCU [Pug90].

Concurrent double-ended queues were discussed in Section 6.1.2, and concurrent
stacks and queues have a long history [Tre86], though not normally the most impressive
performance or scalability. They are nevertheless a common feature of concurrent
libraries [MDJ13b]. Researchers have recently proposed relaxing the ordering constraints
of stacks and queues [Shal 1], with some work indicating that relaxed-ordered queues
actually have better ordering properties than do strict FIFO queues [HKLP12, KLP12,
HHK™"13].

It seems likely that continued work with concurrent data structures will produce novel
algorithms with surprising properties.

U In the guise of swissTM [DFGG11], which is a variant of software transactional
memory in which the developer flags non-shared accesses.

10.6. MICRO-OPTIMIZATION 291

10.6 Micro-Optimization

The devil is in the details.

Unknown

The data structures shown in this section were coded straightforwardly, with no adaptation
to the underlying system’s cache hierarchy. In addition, many of the implementations
used pointers to functions for key-to-hash conversions and other frequent operations.
Although this approach provides simplicity and portability, in many cases it does give
up some performance.

The following sections touch on specialization, memory conservation, and hardware
considerations. Please do not mistake these short sections for a definitive treatise on
this subject. Whole books have been written on optimizing to a specific CPU, let alone
to the set of CPU families in common use today.

10.6.1 Specialization

The resizable hash table presented in Section 10.4 used an opaque type for the key.
This allows great flexibility, permitting any sort of key to be used, but it also incurs
significant overhead due to the calls via of pointers to functions. Now, modern hardware
uses sophisticated branch-prediction techniques to minimize this overhead, but on the
other hand, real-world software is often larger than can be accommodated even by
today’s large hardware branch-prediction tables. This is especially the case for calls via
pointers, in which case the branch prediction hardware must record a pointer in addition
to branch-taken/branch-not-taken information.

This overhead can be eliminated by specializing a hash-table implementation to a given
key type and hash function. Doing so eliminates the ->ht_cmp (), ->ht_gethash(),
and —>ht_getkey () function pointers in the ht structure shown in Listing 10.9 on
page 280. It also eliminates the corresponding calls through these pointers, which
could allow the compiler to inline the resulting fixed functions, eliminating not only the
overhead of the call instruction, but the argument marshalling as well.

In addition, the resizable hash table is designed to fit an API that segregates bucket
selection from concurrency control. Although this allows a single torture test to exercise
all the hash-table implementations in this chapter, it also means that many operations
must compute the hash and interact with possible resize operations twice rather than just
once. In a performance-conscious environment, the hashtab_lock_mod () function
would also return a reference to the bucket selected, eliminating the subsequent call to
ht_get_bucket ().

Quick Quiz 10.16: Couldn’t the hashtorture.h code be modified to accommodate a version
of hashtab_lock_mod () that subsumes the ht_get_bucket () functionality? H

‘ Quick Quiz 10.17: How much do these specializations really save? Are they really worth it?
|

All that aside, one of the great benefits of modern hardware compared to that available
when I first started learning to program back in the early 1970s is that much less
specialization is required. This allows much greater productivity than was possible back
in the days of four-kilobyte address spaces.

292 CHAPTER 10. DATA STRUCTURES

10.6.2 Bits and Bytes

The hash tables discussed in this chapter made almost no attempt to conserve memory.
For example, the ->ht_idx field in the ht structure in Listing 10.9 on page 280 always
has a value of either zero or one, yet takes up a full 32 bits of memory. It could be
eliminated, for example, by stealing a bit from the ->ht_resize_key field. This works
because the ->ht_resize_key field is large enough to address every byte of memory
and the ht_bucket structure is more than one byte long, so that the ->ht_resize_key
field must have several bits to spare.

This sort of bit-packing trick is frequently used in data structures that are highly
replicated, as is the page structure in the Linux kernel. However, the resizable hash
table’s ht structure is not all that highly replicated. It is instead the ht_bucket
structures we should focus on. There are two major opportunities for shrinking the
ht_bucket structure: (1) Placing the ->htb_lock field in a low-order bit of one of
the ->htb_head pointers and (2) Reducing the number of pointers required.

The first opportunity might make use of bit-spinlocks in the Linux kernel, which
are provided by the include/linux/bit_spinlock.h header file. These are used in
space-critical data structures in the Linux kernel, but are not without their disadvantages:

1. They are significantly slower than the traditional spinlock primitives.

2. They cannot participate in the lockdep deadlock detection tooling in the Linux
kernel [CorO6a].

3. They do not record lock ownership, further complicating debugging.

4. They do not participate in priority boosting in -rt kernels, which means that
preemption must be disabled when holding bit spinlocks, which can degrade
real-time latency.

Despite these disadvantages, bit-spinlocks are extremely useful when memory is at a
premium.

One aspect of the second opportunity was covered in Section 10.4.4, which presented
resizable hash tables that require only one set of bucket-list pointers in place of the pair
of sets required by the resizable hash table presented in Section 10.4. Another approach
would be to use singly linked bucket lists in place of the doubly linked lists used in this
chapter. One downside of this approach is that deletion would then require additional
overhead, either by marking the outgoing pointer for later removal or by searching the
bucket list for the element being deleted.

In short, there is a tradeoff between minimal memory overhead on the one hand, and
performance and simplicity on the other. Fortunately, the relatively large memories
available on modern systems have allowed us to prioritize performance and simplicity
over memory overhead. However, even with today’s large-memory systems? it is
sometimes necessary to take extreme measures to reduce memory overhead.

10.6.3 Hardware Considerations

Modern computers typically move data between CPUs and main memory in fixed-sized
blocks that range in size from 32 bytes to 256 bytes. These blocks are called cache
lines, and are extremely important to high performance and scalability, as was discussed

2 Smartphones with hundreds of gigabytes of memory, anyone?

10.6. MICRO-OPTIMIZATION 293

Listing 10.14: Alignment for 64-Byte Cache Lines
| struct hash_elem {

2 struct ht_elem e;

long __attribute

3 ((aligned(64))) counter;
4}

in Section 3.2. One timeworn way to kill both performance and scalability is to place
incompatible variables into the same cacheline. For example, suppose that a resizable
hash table data element had the ht_elem structure in the same cacheline as a counter
that was incremented quite frequently. The frequent incrementing would cause the
cacheline to be present at the CPU doing the incrementing, but nowhere else. If other
CPUs attempted to traverse the hash bucket list containing that element, they would
incur expensive cache misses, degrading both performance and scalability.

One way to solve this problem on systems with 64-byte cache line is shown in
Listing 10.14. Here GCC’s aligned attribute is used to force the —>counter and the
ht_elemn structure into separate cache lines. This would allow CPUs to traverse the
hash bucket list at full speed despite the frequent incrementing.

Of course, this raises the question “How did we know that cache lines are 64
bytes in size?” On a Linux system, this information may be obtained from the
/sys/devices/system/cpu/cpu*/cache/ directories, and it is even possible to
make the installation process rebuild the application to accommodate the system’s
hardware structure. However, this would be more difficult if you wanted your application
to also run on non-Linux systems. Furthermore, even if you were content to run only on
Linux, such a self-modifying installation poses validation challenges.

Fortunately, there are some rules of thumb that work reasonably well in practice,
which were gathered into a 1995 paper [GKPS95].3 The first group of rules involve
rearranging structures to accommodate cache geometry:

1. Separate read-mostly data from data that is frequently updated. For example, place
read-mostly data at the beginning of the structure and frequently updated data at
the end. Where possible, place data that is rarely accessed in between.

2. Ifthe structure has groups of fields such that each group is updated by an independent
code path, separate these groups from each other. Again, it can make sense to
place data that is rarely accessed between the groups. In some cases, it might also
make sense to place each such group into a separate structure referenced by the
original structure.

3. Where possible, associate update-mostly data with a CPU, thread, or task. We saw
several very effective examples of this rule of thumb in the counter implementations
in Chapter 5.

4. In fact, where possible, you should partition your data on a per-CPU, per-thread, or
per-task basis, as was discussed in Chapter 8.

There has recently been some work towards automated trace-based rearrangement
of structure fields [GDZE10]. This work might well ease one of the more painstaking
tasks required to get excellent performance and scalability from multithreaded software.

An additional set of rules of thumb deal with locks:

3 A number of these rules are paraphrased and expanded on here with permission from
Orran Krieger.

294 CHAPTER 10. DATA STRUCTURES

1. Given a heavily contended lock protecting data that is frequently modified, take
one of the following approaches:
(a) Place the lock in a different cacheline than the data that it protects.
(b) Use a lock that is adapted for high contention, such as a queued lock.
(c) Redesign to reduce lock contention. (This approach is best, but can require
quite a bit of work.)

2. Place uncontended locks into the same cache line as the data that they protect. This
approach means that the cache miss that brought the lock to the current CPU also
brought its data.

3. Protect read-mostly data with RCU, or, if RCU cannot be used and the critical
sections are of very long duration, reader-writer locks.

Of course, these are rules of thumb rather than absolute rules. Some experimentation
is required to work out which are most applicable to your particular situation.

10.7 Summary

There’s only one thing more painful than learning
from experience, and that is not learning from
experience.

Archibald MacLeish

This chapter has focused primarily on hash tables, including resizable hash tables, which
are not fully partitionable. Section 10.5 gave a quick overview of a few non-hash-table
data structures. Nevertheless, this exposition of hash tables is an excellent introduction
to the many issues surrounding high-performance scalable data access, including:

1. Fully partitioned data structures work well on small systems, for example, single-
socket systems.

2. Larger systems require locality of reference as well as full partitioning.

3. Read-mostly techniques, such as hazard pointers and RCU, provide good locality
of reference for read-mostly workloads, and thus provide excellent performance
and scalability even on larger systems.

4. Read-mostly techniques also work well on some types of non-partitionable data
structures, such as resizable hash tables.

5. Additional performance and scalability can be obtained by specializing the data
structure to a specific workload, for example, by replacing a general key with a
32-bit integer.

6. Although requirements for portability and for extreme performance often conflict,
there are some data-structure-layout techniques that can strike a good balance
between these two sets of requirements.

That said, performance and scalability are of little use without reliability, so the next
chapter covers validation.

If it is not tested, it doesn’t work.

Unknown

Chapter 11

Validation

I have had a few parallel programs work the first time, but that is only because I have
written a large number parallel programs over the past three decades. And I have had far
more parallel programs that fooled me into thinking that they were working correctly
the first time than actually were working the first time.

I have therefore had great need of validation for my parallel programs. The basic
trick behind parallel validation, as with other software validation, is to realize that the
computer knows what is wrong. It is therefore your job to force it to tell you. This
chapter can therefore be thought of as a short course in machine interrogation.'

A longer course may be found in many recent books on validation, as well as at least
one rather old but quite worthwhile one [Mye79]. Validation is an extremely important
topic that cuts across all forms of software, and is therefore worth intensive study in
its own right. However, this book is primarily about concurrency, so this chapter will
necessarily do little more than scratch the surface of this critically important topic.

Section 11.1 introduces the philosophy of debugging. Section 11.2 discusses tracing,
Section 11.3 discusses assertions, and Section 11.4 discusses static analysis. Section 11.5
describes some unconventional approaches to code review that can be helpful when the
fabled 10,000 eyes happen not to be looking at your code. Section 11.6 overviews the
use of probability for validating parallel software. Because performance and scalability
are first-class requirements for parallel programming, Section 11.7 covers these topics.
Finally, Section 11.8 gives a fanciful summary and a short list of statistical traps to
avoid.

But never forget that the two best debugging tools are a solid design and a good
night’s sleep!

! But you can leave the thumbscrews and waterboards at home. This chapter covers
much more sophisticated and effective methods, especially given that most computer systems
neither feel pain nor fear drowning. At least as far as we know.

295

296 CHAPTER 11. VALIDATION

11.1 Introduction

If debugging is the process of removing software
bugs, then programming must be the process of
putting them in.

Edsger W. Dijkstra

Section 11.1.1 discusses the sources of bugs, and Section 11.1.2 overviews the mindset
required when validating software. Section 11.1.3 discusses when you should start
validation, and Section 11.1.4 describes the surprisingly effective open-source regimen
of code review and community testing.

11.1.1 Where Do Bugs Come From?

Bugs come from developers. The basic problem is that the human brain did not evolve
with computer software in mind. Instead, the human brain evolved in concert with
other human brains and with animal brains. Because of this history, the following three
characteristics of computers often come as a shock to human intuition:

1. Computers typically lack common sense, despite decades of research sacrificed at
the altar of artificial intelligence.

2. Computers generally fail to understand user intent, or more formally, computers
generally lack a theory of mind.

3. Computers usually cannot do anything useful with a fragmentary plan, instead
requiring that each and every detail of each and every possible scenario be spelled
out in full.

The first two points should be uncontroversial, as they are illustrated by any number
of failed products, perhaps most famously Clippy and Microsoft Bob. By attempting to
relate to users as people, these two products raised common-sense and theory-of-mind
expectations that they proved incapable of meeting. Perhaps the set of software assistants
that have recently started appearing on smartphones will fare better, but as of 2020
reviews are mixed. That said, the developers working on them by all accounts still
develop the old way: The assistants might well benefit end users, but not so much their
own developers.

This human love of fragmentary plans deserves more explanation, especially given
that it is a classic two-edged sword. This love of fragmentary plans is apparently due
to the assumption that the person carrying out the plan will have (1) common sense
and (2) a good understanding of the intent behind the plan. This latter assumption is
especially likely to hold in the common case where the person doing the planning and
the person carrying out the plan are one and the same: In this case, the plan will be
revised almost subconsciously as obstacles arise. Therefore, the love of fragmentary
plans has served human beings well, in part because it is better to take random actions
that have a high probability of locating food than to starve to death while attempting to
plan the unplannable. However, the past usefulness of fragmentary plans in everyday
life is no guarantee of their future usefulness in stored-program computers.

Furthermore, the need to follow fragmentary plans has had important effects on the
human psyche, due to the fact that throughout much of human history, life was often

11.1. INTRODUCTION 297

difficult and dangerous. It should come as no surprise that executing a fragmentary
plan that has a high probability of a violent encounter with sharp teeth and claws
requires almost insane levels of optimism—a level of optimism that actually is present
in most human beings. These insane levels of optimism extend to self-assessments
of programming ability, as evidenced by the effectiveness of (and the controversy
over) code-interviewing techniques [Bra07]. In fact, the clinical term for a human
being with less-than-insane levels of optimism is “clinically depressed.” Such people
usually have extreme difficulty functioning in their daily lives, underscoring the perhaps
counter-intuitive importance of insane levels of optimism to a normal, healthy life.
Furtheremore, if you are not insanely optimistic, you are less likely to start a difficult
but worthwhile project.”

Quick Quiz 11.1: When in computing is the willingness to follow a fragmentary plan critically
important? Wl

An important special case is the project that, while valuable, is not valuable enough
to justify the time required to implement it. This special case is quite common, and
one early symptom is the unwillingness of the decision-makers to invest enough to
actually implement the project. A natural reaction is for the developers to produce an
unrealistically optimistic estimate in order to be permitted to start the project. If the
organization (be it open source or proprietary) is strong enough, it might survive the
resulting schedule slips and budget overruns, so that the project might see the light of
day. However, if the organization is not strong enough and if the decision-makers fail
to cancel the project as soon as it becomes clear that the estimates are garbage, then
the project might well kill the organization. This might result in another organization
picking up the project and either completing it, canceling it, or being killed by it. A
given project might well succeed only after killing several organizations. One can only
hope that the organization that eventually makes a success of a serial-organization-killer
project maintains a suitable level of humility, lest it be killed by its next project.

Important though insane levels of optimism might be, they are a key source of bugs
(and perhaps failure of organizations). The question is therefore “How to maintain the
optimism required to start a large project while at the same time injecting enough reality
to keep the bugs down to a dull roar?” The next section examines this conundrum.

11.1.2 Required Mindset

When carrying out any validation effort, you should keep the following definitions in
mind:

1. The only bug-free programs are trivial programs.

2. A reliable program has no known bugs.

From these definitions, it logically follows that any reliable non-trivial program
contains at least one bug that you do not know about. Therefore, any validation effort
undertaken on a non-trivial program that fails to find any bugs is itself a failure. A good
validation is therefore an exercise in destruction. This means that if you are the type of
person who enjoys breaking things, validation is just job for you.

2 There are some famous exceptions to this rule of thumb. One set of exceptions is people
who take on difficult or risky projects in order to make at least a temporary escape from their
depression. Another set is people who have nothing to lose: the project is literally a matter of
life or death.

298 CHAPTER 11. VALIDATION

Quick Quiz 11.2: Suppose that you are writing a script that processes the output of the time
command, which looks as follows:

real 0m0.132s
user 0m0.040s
sys Om0.008s

The script is required to check its input for errors, and to give appropriate diagnostics if fed
erroneous time output. What test inputs should you provide to this program to test it for use
with time output generated by single-threaded programs? W

But perhaps you are a super-programmer whose code is always perfect the first time
every time. If so, congratulations! Feel free to skip this chapter, but I do hope that you
will forgive my skepticism. You see, I have met far more people who claimed to be
able to write perfect code the first time than I have people who were actually capable
of carrying out this feat, which is not too surprising given the previous discussion of
optimism and over-confidence. And even if you really are a super-programmer, you just
might find yourself debugging lesser mortals’ work.

One approach for the rest of us is to alternate between our normal state of insane
optimism (Sure, I can program that!) and severe pessimism (It seems to work, but I just
know that there have to be more bugs hiding in there somewhere!). It helps if you enjoy
breaking things. If you don’t, or if your joy in breaking things is limited to breaking
other people’s things, find someone who does love breaking your code and get them to
help you test it.

Another helpful frame of mind is to hate it when other people find bugs in your
code. This hatred can help motivate you to torture your code beyond reason in order to
increase the probability that you find the bugs rather than someone else. Just make sure
to suspend this hatred long enough to sincerely thank anyone who does find a bug in
your code! After all, by so doing, they saved you the trouble of tracking it down, and
possibly at great personal expense dredging through your code.

Yet another helpful frame of mind is studied skepticism. You see, believing that you
understand the code means you can learn absolutely nothing about it. Ah, but you know
that you completely understand the code because you wrote or reviewed it? Sorry, but
the presence of bugs suggests that your understanding is at least partially fallacious.
One cure is to write down what you know to be true and double-check this knowledge,
as discussed in Sections 11.2—-11.5. What the system actually knows always overrides
whatever you might think you know.

One final frame of mind is to consider the possibility that someone’s life depends on
your code being correct. One way of looking at this is that consistently making good
things happen requires a lot of focus on a lot of bad things that might happen, with an
eye towards preventing or otherwise handling those bad things.? The prospect of these
bad things might also motivate you to torture your code into revealing the whereabouts
of its bugs.

This wide variety of frames of mind opens the door to the possibility of multiple
people with different frames of mind contributing to the project, with varying levels of
optimism. This can work well, if properly organized.

3 For more on this philosophy, see the chapter entitled “The Power of Negative Thinking”
from Chris Hadfield’s excellent book entitled “An Astronaut’s Guide to Life on Earth.”

11.1. INTRODUCTION 299

Figure 11.2: Rationalizing Validation

Some people might see vigorous validation as a form of torture, as depicted in
Figure 11.1.* Such people might do well to remind themselves that, Tux cartoons aside,
they are really torturing an inanimate object, as shown in Figure 11.2. In addition, rest
assured that those who fail to torture their code are doomed to be tortured by it.

However, this leaves open the question of exactly when during the project lifetime
validation should start, a topic taken up by the next section.

11.1.3 When Should Validation Start?

Validation should start exactly when the project starts.
To see this, consider that tracking down a bug is much harder in a large program than
in a small one. Therefore, to minimize the time and effort required to track down bugs,

4 More cynical people might question whether these people are instead merely afraid
that validation will find bugs that they will then be expected to fix.

300 CHAPTER 11. VALIDATION

you should test small units of code. Although you won’t find all the bugs this way, you
will find a substantial fraction, and it will be much easier to find and fix the ones you
do find. Testing at this level can also alert you to larger flaws in your overall design,
minimizing the time you waste writing code that is quite literally broken by design.

But why wait until you have code before validating your design?> Hopefully reading
Chapters 3 and 4 provided you with the information required to avoid some regrettably
common design flaws, but discussing your design with a colleague or even simply
writing it down can help flush out additional flaws.

However, it is all too often the case that waiting to start validation until you have a
design is waiting too long. Mightn’t your natural level of optimism caused you to start
the design before you fully understood the requirements? The answer to this question
will almost always be “yes”. One good way to avoid flawed requirements is to get to
know your users. To really serve them well, you will have to live among them.

Quick Quiz 11.3: You are asking me to do all this validation BS before I even start coding???
That sounds like a great way to never get started!!! Wl

First-of-a-kind projects often use different methodologies such as rapid prototyping or
agile. Here, the main goal of early prototypes are not to create correct implementations,
but rather to learn the project’s requirements. But this does not mean that you omit
validation; it instead means that you approach it differently.

One such approach takes a Darwinian view, with the validation suite eliminating code
that is not fit to solve the problem at hand. From this viewpoint, a vigorous validation
suite is essential to the fitness of your software. However, taking this approach to its
logical conclusion is quite humbling, as it requires us developers to admit that our
carefully crafted changes to the codebase are, from a Darwinian standpoint, random
mutations. On the other hand, this conclusion is supported by long experience indicating
that seven percent of fixes introduce at least one bug [BJ12].

How vigorous should your validation suite be? If the bugs it finds aren’t threatening
the very foundations of your software design, then it is not yet vigorous enough. After
all, your design is just as prone to bugs as is your code, and the earlier you find and fix
the bugs in your design, the less time you will waste coding those design bugs.

Quick Quiz 11.4: Are you actually suggesting that it is possible to test correctness into
software??? Everyone knows that is impossible!!! H

It is worth reiterating that this advice applies to first-of-a-kind projects. If you are
instead doing a project in a well-explored area, you would be quite foolish to refuse
to learn from previous experience. But you should still start validating right at the
beginning of the project, but hopefully guided by others’ hard-won knowledge of both
requirements and pitfalls.

An equally important question is “When should validation stop?”” The best answer
is “Some time after the last change.” Every change has the potential to create a bug,
and thus every change must be validated. Furthermore, validation development should
continue through the full lifetime of the project. After all, the Darwinian perspective
above implies that bugs are adapting to your validation suite. Therefore, unless you
continually improve your validation suite, your project will naturally accumulate hordes
of validation-suite-immune bugs.

Now that we have established that you should start validation when you start the
project (if not earlier!), and that both validation and validation development should

5 The old saying “First we must code, then we have incentive to think” notwithstanding.

11.1. INTRODUCTION 301

continue throughout the lifetime of that project, the following sections cover a number
of validation techniques and methods that have proven their worth.

11.1.4 The Open Source Way

The open-source programming methodology has proven quite effective, and includes a
regimen of intense code review and testing.

I can personally attest to the effectiveness of the open-source community’s intense
code review. One of the first patches I prepared for the Linux kernel involved a distributed
filesystem where a user on one node writes to a given file at a location that a user on
another node has mapped into memory. In this case, it is necessary to invalidate the
affected pages from the mapping in order to allow the filesystem to maintain coherence
during the write operation. I coded up a first attempt at a patch, and, in keeping with the
open-source maxim “post early, post often”, I posted the patch. I then considered how I
was going to test it.

But before I could even decide on an overall test strategy, I got a reply to my posting
pointing out a few bugs. I fixed the bugs and reposted the patch, and returned to thinking
out my test strategy. However, before I had a chance to write any test code, I received a
reply to my reposted patch, pointing out more bugs. This process repeated itself many
times, and I am not sure that I ever got a chance to actually test the patch.

This experience brought home the truth of the open-source saying: Given enough
eyeballs, all bugs are shallow [Ray99].

However, when you post some code or a given patch, it is worth asking a few questions:

1. How many of those eyeballs are actually going to look at your code?
2. How many will be experienced and clever enough to actually find your bugs?

3. Exactly when are they going to look?

I was lucky: There was someone out there who wanted the functionality provided by
my patch, who had long experience with distributed filesystems, and who looked at my
patch almost immediately. If no one had looked at my patch, there would have been no
review, and therefore no finding of bugs. If the people looking at my patch had lacked
experience with distributed filesystems, it is unlikely that they would have found all the
bugs. Had they waited months or even years to look, I likely would have forgotten how
the patch was supposed to work, making it much more difficult to fix them.

However, we must not forget the second tenet of the open-source development, namely
intensive testing. For example, a great many people test the Linux kernel. Some test
patches as they are submitted, perhaps even yours. Others test the -next tree, which is
helpful, but there is likely to be several weeks or even months delay between the time
that you write the patch and the time that it appears in the -next tree, by which time the
patch will not be quite as fresh in your mind. Still others test maintainer trees, which
often have a similar time delay.

Quite a few people don’t test code until it is committed to mainline, or the master
source tree (Linus’s tree in the case of the Linux kernel). If your maintainer won’t
accept your patch until it has been tested, this presents you with a deadlock situation:
your patch won’t be accepted until it is tested, but it won’t be tested until it is accepted.
Nevertheless, people who test mainline code are still relatively aggressive, given that
many people and organizations do not test code until it has been pulled into a Linux
distro.

302 CHAPTER 11. VALIDATION

And even if someone does test your patch, there is no guarantee that they will be
running the hardware and software configuration and workload required to locate your
bugs.

Therefore, even when writing code for an open-source project, you need to be prepared
to develop and run your own test suite. Test development is an underappreciated and
very valuable skill, so be sure to take full advantage of any existing test suites available
to you. Important as test development is, we will leave further discussion of it to books
dedicated to that topic. The following sections therefore discuss locating bugs in your
code given that you already have a good test suite.

11.2 Tracing

The machine knows what is wrong. Make it tell you.

Unknown

When all else fails, add a printk () ! Oraprintf (), if you are working with user-mode
C-language applications.

The rationale is simple: If you cannot figure out how execution reached a given point
in the code, sprinkle print statements earlier in the code to work out what happened. You
can get a similar effect, and with more convenience and flexibility, by using a debugger
such as gdb (for user applications) or kgdb (for debugging Linux kernels). Much more
sophisticated tools exist, with some of the more recent offering the ability to rewind
backwards in time from the point of failure.

These brute-force testing tools are all valuable, especially now that typical systems
have more than 64K of memory and CPUs running faster than 4 MHz. Much has been
written about these tools, so this chapter will add only a little more.

However, these tools all have a serious shortcoming when the job at hand is to
convince a the fastpath of a high-performance parallel algorithm to tell you what is
going wrong, namely, they often have excessive overheads. There are special tracing
technologies for this purpose, which typically leverage data ownership techniques (see
Chapter 8) to minimize the overhead of runtime data collection. One example within the
Linux kernel is “trace events” [Ros10b, Ros10c, Ros10d, Ros10a], which uses per-CPU
buffers to allow data to be collected with extremely low overhead. Even so, enabling
tracing can sometimes change timing enough to hide bugs, resulting in heisenbugs,
which are discussed in Section 11.6 and especially Section 11.6.4. In userspace code,
there is a huge number of tools that can help you. One good starting point is Brendan
Gregg’s blog.®

Even if you avoid heisenbugs, other pitfalls await you. For example, although the
machine really does know all, what it knows is almost always way more than your head
can hold. For this reason, high-quality test suites normally come with sophisticated
scripts to analyze the voluminous output. But beware—scripts will only notice what you
tell them to. My rcutorture scripts are a case in point: Early versions of those scripts
were quite satisfied with a test run in which RCU grace periods stalled indefinitely. This
of course resulted in the scripts being modified to detect RCU grace-period stalls, but
this does not change the fact that the scripts will only detects problems that I think to

% http://www.brendangregg.com/blog/

http://www.brendangregg.com/blog/

11.3. ASSERTIONS 303

make them detect. But note well that unless you have a solid design, you won’t know
what your script should check for!

Another problem with tracing and especially with printk() calls is that their
overhead is often too much for production use. In some such cases, assertions can be
helpful.

11.3 Assertions

No man really becomes a fool until he stops asking
questions.

Charles P. Steinmetz

Assertions are usually implemented in the following manner:

if (something_bad_is_happening())
2 complain() ;

This pattern is often encapsulated into C-preprocessor macros or language intrinsics,
for example, in the Linux kernel, this might be represented as WARN_ON (something_
bad_is_happening()). Of course, if something_bad_is_happening() quite
frequently, the resulting output might obscure reports of other problems, in which case
WARN_ON_ONCE (something_bad_is_happening()) might be more appropriate.

[Quick Quiz 11.5: How can you implement WARN_ON_ONCE()? M]

In parallel code, one especially bad something that might happen is that a function
expecting to be called under a particular lock might be called without that lock being
held. Such functions sometimes have header comments stating something like “The
caller must hold foo_lock when calling this function”, but such a comment does
no good unless someone actually reads it. An executable statement carries far more
weight. The Linux kernel’s lockdep facility [CorO6a, Ros11] therefore provides a
lockdep_assert_held() function that allows functions to verify that the proper locks
are held. Of course, lockdep incurs significant overhead, so that it is not necessarily
appropriate for production use.

So what can be done in cases where checking is necessary, but where the overhead
of runtime checking cannot be tolerated? One approach is static analysis, which is
discussed in the next section.

11.4 Static Analysis

A lot of automation isn’t a replacement of humans
but of mind-numbing behavior.

Summarized from Stewart Butterfield

Static analysis is a validation technique were one program takes a second program as
input, reporting errors and vulnerabilities located in this second program. Interestingly
enough, almost all programs are subjected to static analysis by their compilers or
interpreters. These tools are of course far from perfect, but their ability to locate errors

304 CHAPTER 11. VALIDATION

has improved immensely over the past few decades, in part because they now have much
more than 64K bytes of memory in which to carry out their analysis.

The original UNIX 1int tool [Joh77] was quite useful, though much of its function-
ality has since been incorporated into C compilers. There are nevertheless lint-like tools
under development and in use to this day.

The sparse static analyzer [Cor04b] looks for higher-level issues in the Linux kernel,
including:

1. Misuse of pointers to user-space structures.

2. Assignments from too-long constants.

3. Empty switch statements.

4. Mismatched lock acquisition and release primitives.
5. Misuse of per-CPU primitives.

6. Use of RCU primitives on non-RCU pointers and vice versa.

Although it is likely that compilers will continue to increase their static-analysis
capabilities, the sparse static analyzer demonstrates the benefits of static analysis outside
of the compiler, particularly for finding application-specific bugs.

11.5 Code Review

If a man speaks of my virtues, he steals from me; if
he speaks of my vices, then he is my teacher.

Chinese proverb

Various code-review activities are special cases of static analysis, but with human beings
doing the analysis. This section covers inspection, walkthroughs, and self-inspection.

11.5.1 Inspection

Traditionally, formal code inspections take place in face-to-face meetings with formally
defined roles: moderator, developer, and one or two other participants. The developer
reads through the code, explaining what it is doing and why it works. The one or two
other participants ask questions and raise issues, hopefully exposing the author’s invalid
assumptions, while the moderator’s job is to resolve any resulting conflicts and of course
to take notes. This process can be extremely effective at locating bugs, particularly if all
of the participants are familiar with the code at hand.

However, this face-to-face formal procedure does not necessarily work well in the
global Linux kernel community, although it might work well via an IRC session.
Instead, individuals review code separately and provide comments via email or IRC.
The note-taking is provided by email archives or IRC logs, and moderators volunteer
their services as appropriate. Give or take the occasional flamewar, this process also
works reasonably well, particularly if all of the participants are familiar with the code at
hand. That said, one advantage of the Linux kernel community approach over traditional
formal inspections is the greater probability of contributions from people not familiar

11.5. CODE REVIEW 305

with the code, who might not be blinded by the author’s invalid assumptions. Another
advantage is that community members can and do test the code.

Quick Quiz 11.6: The concerns about invalid assumptions are overblown. After all, don’t
most Linux kernel hackers know what they are doing? Just what sorts of invalid assumptions
are you accusing them of harboring, anyway??? W

It is quite likely that the Linux kernel community’s review process is ripe for
improvement:

1. There is sometimes a shortage of people with the time and expertise required to
carry out an effective review.

2. Even though all review discussions are archived, they are often “lost” in the sense
that insights are forgotten and people often fail to look up the discussions. This
can result in re-insertion of the same old bugs.

3. It is sometimes difficult to resolve flamewars when they do break out, especially
when the combatants have disjoint goals, experience, and vocabulary.

Perhaps some of the needed improvements will be provided by continuous-integration-
style testing, but there are many bugs more easily found by review than by testing. When
reviewing, therefore, it is worthwhile to look at relevant documentation in commit logs,
bug reports, and LWN articles. This documentation can help you quickly build up the
required expertise.

11.5.2 Walkthroughs

A traditional code walkthrough is similar to a formal inspection, except that the group
“plays computer” with the code, driven by specific test cases. A typical walkthrough
team has a moderator, a secretary (who records bugs found), a testing expert (who
generates the test cases) and perhaps one to two others. These can be extremely effective,
albeit also extremely time-consuming.

It has been some decades since I have participated in a formal walkthrough, and I
suspect that a present-day walkthrough would use single-stepping debuggers. One could
imagine a particularly sadistic procedure as follows:

1. The tester presents the test case.

2. The moderator starts the code under a debugger, using the specified test case as
input.

3. Before each statement is executed, the developer is required to predict the outcome
of the statement and explain why this outcome is correct.

4. If the outcome differs from that predicted by the developer, this is taken as evidence
of a potential bug.

5. In parallel code, a “concurrency shark™ asks what code might execute concurrently
with this code, and why such concurrency is harmless.

Sadistic, certainly. Effective? Maybe. If the participants have a good understanding
of the requirements, software tools, data structures, and algorithms, then walkthroughs
can be extremely effective. If not, walkthroughs are often a waste of time.

306 CHAPTER 11. VALIDATION

11.5.3 Self-Inspection

Although developers are usually not all that effective at inspecting their own code,
there are a number of situations where there is no reasonable alternative. For example,
the developer might be the only person authorized to look at the code, other qualified
developers might all be too busy, or the code in question might be sufficiently bizarre
that the developer is unable to convince anyone else to take it seriously until after
demonstrating a prototype. In these cases, the following procedure can be quite helpful,
especially for complex parallel code:

1. Write design document with requirements, diagrams for data structures, and
rationale for design choices.

2. Consult with experts, update the design document as needed.

3. Write the code in pen on paper, correct errors as you go. Resist the temptation to
refer to pre-existing nearly identical code sequences, instead, copy them.

4. At each step, articulate and question your assumptions, where possible, inserting
assertions or constructing tests to check them.

5. If there were errors, copy the code in pen on fresh paper, correcting errors as you
go. Repeat until the last two copies are identical.

6. Produce proofs of correctness for any non-obvious code.
7. Use a source-code control system. Commit early; commit often.
8. Where possible, test the code fragments from the bottom up.

9. When all the code is integrated (but preferably before), do full-up functional and
stress testing.

10. Once the code passes all tests, write code-level documentation, perhaps as an
extension to the design document discussed above. Fix both the code and the test
code as needed.

When I faithfully follow this procedure for new RCU code, there are normally only a
few bugs left at the end. With a few prominent (and embarrassing) exceptions [McK11a],
I usually manage to locate these bugs before others do. That said, this is getting more
difficult over time as the number and variety of Linux-kernel users increases.

Quick Quiz 11.7: Why would anyone bother copying existing code in pen on paper??? Doesn’t
that just increase the probability of transcription errors? W

Quick Quiz 11.8: This procedure is ridiculously over-engineered! How can you expect to get
a reasonable amount of software written doing it this way??? W

Quick Quiz 11.9: What do you do if, after all the pen-on-paper copying, you find a bug while
typing in the resulting code? W

The above procedure works well for new code, but what if you need to inspect code
that you have already written? You can of course apply the above procedure for old
code in the special case where you wrote one to throw away [FPB79], but the following
approach can also be helpful in less desperate circumstances:

11.5. CODE REVIEW 307

1. Using your favorite documentation tool (IZEX, HTML, OpenOffice, or straight
ASCII), describe the high-level design of the code in question. Use lots of diagrams
to illustrate the data structures and how these structures are updated.

2. Make a copy of the code, stripping away all comments.
3. Document what the code does statement by statement.

4. Fix bugs as you find them.

This works because describing the code in detail is an excellent way to spot
bugs [Mye79]. Although this second procedure is also a good way to get your
head around someone else’s code, in many cases, the first step suffices.

Although review and inspection by others is probably more efficient and effective,
the above procedures can be quite helpful in cases where for whatever reason it is not
feasible to involve others.

At this point, you might be wondering how to write parallel code without having to
do all this boring paperwork. Here are some time-tested ways of accomplishing this:

1. Write a sequential program that scales through use of available parallel library
functions.

2. Write sequential plug-ins for a parallel framework, such as map-reduce, BOINC,
or a web-application server.

3. Do such a good job of parallel design that the problem is fully partitioned, then
just implement sequential program(s) that run in parallel without communication.

4. Stick to one of the application areas (such as linear algebra) where tools can
automatically decompose and parallelize the problem.

5. Make extremely disciplined use of parallel-programming primitives, so that the
resulting code is easily seen to be correct. But beware: It is always tempting to
break the rules “just a little bit” to gain better performance or scalability. Breaking
the rules often results in general breakage. That is, unless you carefully do the
paperwork described in this section.

But the sad fact is that even if you do the paperwork or use one of the above ways to
more-or-less safely avoid paperwork, there will be bugs. If nothing else, more users and
a greater variety of users will expose more bugs more quickly, especially if those users
are doing things that the original developers did not consider. The next section describes
how to handle the probabilistic bugs that occur all too commonly when validating
parallel software.

Quick Quiz 11.10: Wait! Why on earth would an abstract piece of software fail only
sometimes??? W

308 CHAPTER 11. VALIDATION

Hooray! | passed
the stress test!

Ha. You just got lucky

Figure 11.3: Passed on Merits? Or Dumb Luck?

11.6 Probability and Heisenbugs

With both heisenbugs and impressionistic art, the
closer you get, the less you see.

Unknown

So your parallel program fails. Sometimes.

But you used techniques from the earlier sections to locate the problem and now have
a fix in place! Congratulations!!!

Now the question is just how much testing is required in order to be certain that you
actually fixed the bug, as opposed to just reducing the probability of it occurring on
the one hand, having fixed only one of several related bugs on the other hand, or made
some ineffectual unrelated change on yet a third hand. In short, what is the answer to
the eternal question posed by Figure 11.3?

Unfortunately, the honest answer is that an infinite amount of testing is required to
attain absolute certainty.

Quick Quiz 11.11: Suppose that you had a very large number of systems at your disposal. For
example, at current cloud prices, you can purchase a huge amount of CPU time at a reasonably
low cost. Why not use this approach to get close enough to certainty for all practical purposes?

But suppose that we are willing to give up absolute certainty in favor of high
probability. Then we can bring powerful statistical tools to bear on this problem.
However, this section will focus on simple statistical tools. These tools are extremely
helpful, but please note that reading this section not a substitute for taking a good set of
statistics classes.’

7 Which I most highly recommend. The few statistics courses I have taken have provided
value way out of proportion to the time I spent studying for them.

11.6. PROBABILITY AND HEISENBUGS 309

For our start with simple statistical tools, we need to decide whether we are doing
discrete or continuous testing. Discrete testing features well-defined individual test runs.
For example, a boot-up test of a Linux kernel patch is an example of a discrete test. You
boot the kernel, and it either comes up or it does not. Although you might spend an
hour boot-testing your kernel, the number of times you attempted to boot the kernel and
the number of times the boot-up succeeded would often be of more interest than the
length of time you spent testing. Functional tests tend to be discrete.

On the other hand, if my patch involved RCU, I would probably run rcutorture, which
is a kernel module that, strangely enough, tests RCU. Unlike booting the kernel, where
the appearance of a login prompt signals the successful end of a discrete test, rcutorture
will happily continue torturing RCU until either the kernel crashes or until you tell it to
stop. The duration of the rcutorture test is therefore (usually) of more interest than the
number of times you started and stopped it. Therefore, rcutorture is an example of a
continuous test, a category that includes many stress tests.

The statistics governing discrete and continuous tests differ somewhat. However, the
statistics for discrete tests is simpler and more familiar than that for continuous tests,
and furthermore the statistics for discrete tests can often be pressed into service (with
some loss of accuracy) for continuous tests. We therefore start with discrete tests.

11.6.1 Statistics for Discrete Testing

Suppose that the bug had a 10 % chance of occurring in a given run and that we do five
runs. How do we compute that probability of at least one run failing? One way is as
follows:

1. Compute the probability of a given run succeeding, which is 90 %.

2. Compute the probability of all five runs succeeding, which is 0.9 raised to the fifth
power, or about 59 %.

3. There are only two possibilities: either all five runs succeed, or at least one fails.
Therefore, the probability of at least one failure is 59 % taken away from 100 %, or
41 %.

However, many people find it easier to work with a formula than a series of steps,
although if you prefer the above series of steps, have at it! For those who like formulas,
call the probability of a single failure f. The probability of a single success is then
1 — f and the probability that all of n tests will succeed is then:

Su=(—f) (11.1)
The probability of failure is 1 — §,;, or:

Fo=1-(1—f)" (11.2)

Quick Quiz 11.12: Say what??? When I plug the earlier example of five tests each with a
10 % failure rate into the formula, I get 59,050 % and that just doesn’t make sense!!! H

So suppose that a given test has been failing 10 % of the time. How many times do
you have to run the test to be 99 % sure that your supposed fix has actually improved
matters?

310 CHAPTER 11. VALIDATION

1000 T T T T

100

10

Number of Runs for 99% Confidence

1 L L L L
0 0.2 0.4 0.6 0.8 1

Per-Run Failure Probability

Figure 11.4: Number of Tests Required for 99 Percent Confidence Given Failure Rate

Another way to ask this question is “How many times would we need to run the test
to cause the probability of failure to rise above 99 %7 After all, if we were to run the
test enough times that the probability of seeing at least one failure becomes 99 %, if
there are no failures, there is only 1 % probability of this being due to dumb luck. And if
we plug f = 0.1 into Equation 11.2 and vary n, we find that 43 runs gives us a 98.92 %
chance of at least one test failing given the original 10 % per-test failure rate, while 44
runs gives us a 99.03 % chance of at least one test failing. So if we run the test on our
fix 44 times and see no failures, there is a 99 % probability that our fix was actually a
real improvement.

But repeatedly plugging numbers into Equation 11.2 can get tedious, so let’s solve for
n:

Fp=1-(1-/)" (11.3)
1-F,=(1-f) (11.4)
log(1 - F,) =n log(l - f) (11.5)

Finally the number of tests required is given by:

_ log (1 B Fn)

log (1 - f)

Plugging f = 0.1 and F,, = 0.99 into Equation 11.6 gives 43.7, meaning that we
need 44 consecutive successful test runs to be 99 % certain that our fix was a real

improvement. This matches the number obtained by the previous method, which is
reassuring.

(11.6)

[Quick Quiz 11.13: In Equation 11.6, are the logarithms base-10, base-2, or base-¢? Wl J

Figure 11.4 shows a plot of this function. Not surprisingly, the less frequently each
test run fails, the more test runs are required to be 99 % confident that the bug has been
fixed. If the bug caused the test to fail only 1 % of the time, then a mind-boggling 458
test runs are required. As the failure probability decreases, the number of test runs
required increases, going to infinity as the failure probability goes to zero.

11.6. PROBABILITY AND HEISENBUGS 311

The moral of this story is that when you have found a rarely occurring bug, your
testing job will be much easier if you can come up with a carefully targeted test with a
much higher failure rate. For example, if your targeted test raised the failure rate from
1 % to 30 %, then the number of runs required for 99 % confidence would drop from
458 test runs to a mere thirteen test runs.

But these thirteen test runs would only give you 99 % confidence that your fix had
produced “some improvement”. Suppose you instead want to have 99 % confidence that
your fix reduced the failure rate by an order of magnitude. How many failure-free test
runs are required?

An order of magnitude improvement from a 30 % failure rate would be a 3 % failure
rate. Plugging these numbers into Equation 11.6 yields:

_log(1-0.99)

= =151.2 11.7
log (1 —0.03) (117

So our order of magnitude improvement requires roughly an order of magnitude
more testing. Certainty is impossible, and high probabilities are quite expensive.
Clearly making tests run more quickly and making failures more probable are essential
skills in the development of highly reliable software. These skills will be covered in
Section 11.6.4.

11.6.2 Abusing Statistics for Discrete Testing

But suppose that you have a continuous test that fails about three times every ten hours,
and that you fix the bug that you believe was causing the failure. How long do you have
to run this test without failure to be 99 % certain that you reduced the probability of
failure?

Without doing excessive violence to statistics, we could simply redefine a one-hour
run to be a discrete test that has a 30 % probability of failure. Then the results of in the
previous section tell us that if the test runs for 13 hours without failure, there is a 99 %
probability that our fix actually improved the program’s reliability.

A dogmatic statistician might not approve of this approach, but the sad fact is that the
errors introduced by this sort of abuse of statistical methodology are usually quite small
compared to the errors inherent in your measurements of your program’s failure rates.
Nevertheless, the next section describes a slightly less dodgy approach.

11.6.3 Statistics for Continuous Testing

The fundamental formula for failure probabilities is the Poisson distribution:

Fn="—ce (11.8)

Here F,, is the probability of m failures in the test and A is the expected failure
rate per unit time. A rigorous derivation may be found in any advanced probability
textbook, for example, Feller’s classic “An Introduction to Probability Theory and Its
Applications” [Fel50], while a more intuitive approach may be found in the first edition
of this book [McK14a].

Let’s try reworking the example from Section 11.6.2 using the Poisson distribution.
Recall that this example involved a test with a 30 Y% failure rate per hour, and that the
question was how long the test would need to run error-free on a alleged fix to be 99 %

312 CHAPTER 11. VALIDATION

certain that the fix actually reduced the failure rate. In this case, m is zero, so that
Equation 11.8 reduces to:

Fo=e™* (11.9)

Solving this requires setting Fy to 0.01 and solving for 4, resulting in:

1=-1n0.01=4.6 (11.10)

Because we get 0.3 failures per hour, the number of hours required is 4.6/0.3 = 14.3,
which is within 10 % of the 13 hours calculated using the method in Section 11.6.2.
Given that you normally won’t know your failure rate to within 10 %, this indicates
that the method in Section 11.6.2 is a good and sufficient substitute for the Poisson
distribution in a great many situations.

More generally, if we have n failures per unit time, and we want to be P % certain
that a fix reduced the failure rate, we can use the following formula:

1. 100-P

T=-—In—q (11.11)

Quick Quiz 11.14: Suppose that a bug causes a test failure three times per hour on average.
How long must the test run error-free to provide 99.9 % confidence that the fix significantly
reduced the probability of failure? H

As before, the less frequently the bug occurs and the greater the required level of
confidence, the longer the required error-free test run.

Suppose that a given test fails about once every hour, but after a bug fix, a 24-hour
test run fails only twice. Assuming that the failure leading to the bug is a random
occurrence, what is the probability that the small number of failures in the second run
was due to random chance? In other words, how confident should we be that the fix
actually had some effect on the bug? This probability may be calculated by summing
Equation 11.8 as follows:

Fo+F +...+Fp +F =Z—e*” (11.12)
i=0

This is the Poisson cumulative distribution function, which can be written more
compactly as:

Fiem=) e (11.13)

Here m is the number of errors in the long test run (in this case, two) and A is expected
number of errors in the long test run (in this case, 24). Plugging m = 2 and A1 = 24 into
this expression gives the probability of two or fewer failures as about 1.2 x 1078, in other
words, we have a high level of confidence that the fix actually had some relationship to
the bug.®

Quick Quiz 11.15: Doing the summation of all the factorials and exponentials is a real pain.
Isn’t there an easier way? H

8 Of course, this result in no way excuses you from finding and fixing the bug(s) resulting
in the remaining two failures!

11.6. PROBABILITY AND HEISENBUGS 313

Quick Quiz 11.16: But wait!!! Given that there has to be some number of failures (including
the possibility of zero failures), shouldn’t the summation shown in Equation 11.13 approach the
value 1 as m goes to infinity? W

The Poisson distribution is a powerful tool for analyzing test results, but the fact is
that in this last example there were still two remaining test failures in a 24-hour test
run. Such a low failure rate results in very long test runs. The next section discusses
counter-intuitive ways of improving this situation.

11.6.4 Hunting Heisenbugs

This line of thought also helps explain heisenbugs: adding tracing and assertions can
easily reduce the probability of a bug appearing, which is why extremely lightweight
tracing and assertion mechanism are so critically important.

The term “heisenbug” was inspired by the Heisenberg Uncertainty Principle from
quantum physics, which states that it is impossible to exactly quantify a given particle’s
position and velocity at any given point in time [Hei27]. Any attempt to more accurately
measure that particle’s position will result in increased uncertainty of its velocity. A
roughly similar effect occurs for heisenbugs: attempts to track down the heisenbug
causes it to radically change its symptoms or even disappear completely.’

If the field of physics inspired the name of this problem, it is only logical that the
field of physics should inspire the solution. Fortunately, particle physics is up to the
task: Why not create an anti-heisenbug to annihilate the heisenbug? Or, perhaps more
accurately, to annihilate the heisen-ness of the heisenbug?

This section describes a number of ways to do just that:

1. Add delay to race-prone regions.
Increase workload intensity.
Test suspicious subsystems in isolation.

Simulate unusual events.

wok v

Count near misses.

Although producing an anti-heisenbug for a given heisenbug is more an art than a
science, the following sections give some tips on generating the corresponding species
of anti-heisenbug. These are followed by a discussion section, Section 11.6.4.6.

11.6.4.1 Add Delay

Consider the count-lossy code in Section 5.1. Adding printf () statements will likely
greatly reduce or even eliminate the lost counts. However, converting the load-add-store
sequence to a load-add-delay-store sequence will greatly increase the incidence of lost
counts (try it!). Once you spot a bug involving a race condition, it is frequently possible
to create an anti-heisenbug by adding delay in this manner.

Of course, this begs the question of how to find the race condition in the first place.
This is a bit of a dark art, but there are a number of things you can do to find them.

° The term “heisenbug” is a misnomer, as most heisenbugs are fully explained by the
observer effect from classical physics. Nevertheless, the name “heisenbug” has stuck.

314 CHAPTER 11. VALIDATION

One approach is to recognize that race conditions often end up corrupting some
of the data involved in the race. It is therefore good practice to double-check the
synchronization of any corrupted data. Even if you cannot immediately recognize
the race condition, adding delay before and after accesses to the corrupted data might
change the failure rate. By adding and removing the delays in an organized fashion (e.g.,
binary search), you might learn more about the workings of the race condition.

Quick Quiz 11.17: How is this approach supposed to help if the corruption affected some
unrelated pointer, which then caused the corruption??? Wl

Another important approach is to vary the software and hardware configuration and
look for statistically significant differences in failure rate. You can then look more
intensively at the code implicated by the software or hardware configuration changes
that make the greatest difference in failure rate. It might be helpful to test that code in
isolation, for example.

One important aspect of software configuration is the history of changes, which is
why git bisect is so useful. Bisection of the change history can provide very valuable
clues as to the nature of the heisenbug.

Quick Quiz 11.18: But I did the bisection, and ended up with a huge commit. What do I do
now? M

However you locate the suspicious section of code, you can then introduce delays to
attempt to increase the probability of failure. As we have seen, increasing the probability
of failure makes it much easier to gain high confidence in the corresponding fix.

However, it is sometimes quite difficult to track down the problem using normal
debugging techniques. The following sections present some other alternatives.

11.6.4.2 Increase Workload Intensity

It is often the case that a given test suite places relatively low stress on a given subsystem,
so that a small change in timing can cause a heisenbug to disappear. One way to create
an anti-heisenbug for this case is to increase the workload intensity, which has a good
chance of increasing the probability of the bug appearing. If the probability is increased
sufficiently, it may be possible to add lightweight diagnostics such as tracing without
causing the bug to vanish.

How can you increase the workload intensity? This depends on the program, but here
are some things to try:

1. Add more CPUs.

2. If the program uses networking, add more network adapters and more or faster
remote systems.

3. If the program is doing heavy I/O when the problem occurs, either (1) add more
storage devices, (2) use faster storage devices, for example, substitute SSDs for
disks, or (3) use a RAM-based filesystem to substitute main memory for mass
storage.

4. Change the size of the problem, for example, if doing a parallel matrix multiply,
change the size of the matrix. Larger problems may introduce more complexity,
but smaller problems often increase the level of contention. If you aren’t sure
whether you should go large or go small, just try both.

11.6. PROBABILITY AND HEISENBUGS 315

However, it is often the case that the bug is in a specific subsystem, and the structure
of the program limits the amount of stress that can be applied to that subsystem. The
next section addresses this situation.

11.6.4.3 Isolate Suspicious Subsystems

If the program is structured such that it is difficult or impossible to apply much stress to
a subsystem that is under suspicion, a useful anti-heisenbug is a stress test that tests
that subsystem in isolation. The Linux kernel’s rcutorture module takes exactly this
approach with RCU: By applying more stress to RCU than is feasible in a production
environment, the probability that any RCU bugs will be found during rcutorture testing
rather than during production use is increased.'”

In fact, when creating a parallel program, it is wise to stress-test the components
separately. Creating such component-level stress tests can seem like a waste of time, but
a little bit of component-level testing can save a huge amount of system-level debugging.

11.6.4.4 Simulate Unusual Events

Heisenbugs are sometimes due to unusual events, such as memory-allocation failure,
conditional-lock-acquisition failure, CPU-hotplug operations, timeouts, packet losses,
and so on. One way to construct an anti-heisenbug for this class of heisenbug is to
introduce spurious failures.

For example, instead of invoking malloc () directly, invoke a wrapper function that
uses a random number to decide whether to return NULL unconditionally on the one hand,
or to actually invoke malloc () and return the resulting pointer on the other. Inducing
spurious failures is an excellent way to bake robustness into sequential programs as well
as parallel programs.

Quick Quiz 11.19: Why don’t existing conditional-locking primitives provide this spurious-
failure functionality? H

11.6.4.5 Count Near Misses

Bugs are often an all-or-nothing thing, so that either the bug happens or it doesn’t, with
nothing in between. However, it is sometimes possible to define a near miss where the
bug does not result in a failure, but has likely manifested. For example, suppose your
code is making a robot walk. The robot’s falling over constitutes a bug in your program,
but stumbling and recovering might constitute a near miss. If the robot falls over only
once per hour, but stumbles every few minutes, you might be able to speed up your
debugging progress by counting the number of stumbles in addition to the number of
falls.

In concurrent programs, timestamping can sometimes be used to detect near misses.
For example, locking primitives incur significant delays, so if there is a too-short delay
between a pair of operations that are supposed to be protected by different acquisitions
of the same lock, this too-short delay might be counted as a near miss.!!

For example, a low-probability bug in RCU priority boosting occurred roughly once
every hundred hours of focused rcutorture testing. Because it would take almost 500

10 Though sadly not increased to probability one.
1 Of course, in this case, you might be better off using whatever 1ock_he1d () primitive
is available in your environment. If there isn’t a lock_held () primitive, create one!

316 CHAPTER 11. VALIDATION

\ A
call_rcu()
\ Grace-Period Start P
2
g . § &
- / Grace-Period End z i
\/_\/ ‘
/ Callback Invocation

Figure 11.5: RCU Errors and Near Misses

hours of failure-free testing to be 99 % certain that the bug’s probability had been
significantly reduced, the git bisect process to find the failure would be painfully
slow—or would require an extremely large test farm. Fortunately, the RCU operation
being tested included not only a wait for an RCU grace period, but also a previous wait
for the grace period to start and a subsequent wait for an RCU callback to be invoked
after completion of the RCU grace period. This distinction between an rcutorture
error and near miss is shown in Figure 11.5. To qualify as a full-fledged error, an RCU
read-side critical section must extend from the call_rcu() that initiated a grace period,
through the remainder of the previous grace period, through the entirety of the grace
period initiated by the call_rcu() (denoted by the region between the jagged lines),
and through the delay from the end of that grace period to the callback invocation, as
indicated by the “Error” arrow. However, the formal definition of RCU prohibits RCU
read-side critical sections from extending across a single grace period, as indicated by
the “Near Miss” arrow. This suggests using near misses as the error condition, however,
this can be problematic because different CPUs can have different opinions as to exactly
where a given grace period starts and ends, as indicated by the jagged lines.'> Using the
near misses as the error condition could therefore result in false positives, which need
to be avoided in the automated rcutorture testing.

By sheer dumb luck, rcutorture happens to include some statistics that are sensitive
to the near-miss version of the grace period. As noted above, these statistics are subject
to false positives due to their unsynchronized access to RCU’s state variables, but these
false positives turn out to be extremely rare on strongly ordered systems such as the
IBM mainframe and x86, occurring less than once per thousand hours of testing.

These near misses occurred roughly once per hour, about two orders of magnitude
more frequently than the actual errors. Use of these near misses allowed the bug’s root
cause to be identified in less than a week and a high degree of confidence in the fix to
be built in less than a day. In contrast, excluding the near misses in favor of the real
errors would have required months of debug and validation time.

To sum up near-miss counting, the general approach is to replace counting of
infrequent failures with more-frequent near misses that are believed to be correlated
with those failures. These near-misses can be considered an anti-heisenbug to the real
failure’s heisenbug because the near-misses, being more frequent, are likely to be more

12 The jaggedness of these lines is seriously understated because idle CPUs might well be
completely unaware of the most recent few hundred grace periods.

11.6. PROBABILITY AND HEISENBUGS 317

robust in the face of changes to your code, for example, the changes you make to add
debugging code.

11.6.4.6 Heisenbug Discussion

The alert reader might have noticed that this section was fuzzy and qualitative, in stark
contrast to the precise mathematics of Sections 11.6.1, 11.6.2, and 11.6.3. If you love
precision and mathematics, you may be disappointed to learn that the situations to which
this section applies are far more common than those to which the preceding sections
apply.

In fact, the common case is that although you might have reason to believe that your
code has bugs, you have no idea what those bugs are, what causes them, how likely
they are to appear, or what conditions affect their probability of appearance. In this
all-too-common case, statistics cannot help you.'> That is to say, statistics cannot help
you directly. But statistics can be of great indirect help—if you have the humility
required to admit that you make mistakes, that you can reduce the probability of these
mistakes (for example, by getting enough sleep), and that the number and type of
mistakes you made in the past is indicative of the number and type of mistakes that you
are likely to make in the future. For example, I have a deplorable tendency to forget to
write a small but critical portion of the initialization code, and frequently get most or
even all of a parallel program correct—except for a stupid omission in initialization.
Once I was willing to admit to myself that I am prone to this type of mistake, it was
easier (but not easy!) to force myself to double-check my initialization code. Doing this
allowed me to find numerous bugs ahead of time.

Using Taleb’s nomenclature [Tal07], a white swan is a bug that we can reproduce. We
can run a large number of tests, use ordinary statistics to estimate the bug’s probability,
and use ordinary statistics again to estimate our confidence in a proposed fix. An
unsuspected bug is a black swan. We know nothing about it, we have no tests that
have yet caused it to happen, and statistics is of no help. Studying our own behavior,
especially the number and types of mistakes we make, can turn black swans into grey
swans. We might not know exactly what the bugs are, but we have some idea of their
number and maybe also of their type. Ordinary statistics is still of no help (at least not
until we are able to reproduce one of the bugs), but robust'* testing methods can be of
great help. The goal, therefore, is to use experience and good validation practices to
turn the black swans grey, focused testing and analysis to turn the grey swans white, and
ordinary methods to fix the white swans.

That said, thus far, we have focused solely on bugs in the parallel program’s
functionality. However, because performance is a first-class requirement for a parallel
program (otherwise, why not write a sequential program?), the next section discusses
performance bugs.

13" Although if you know what your program is supposed to do and if your program is small
enough (both less likely that you might think), then the formal-verification tools described in
Chapter 12 can be helpful.

14 That is to say brutal.

318 CHAPTER 11. VALIDATION

11.7 Performance Estimation

There are lies, damn lies, statistics, and benchmarks.

Unknown

Parallel programs usually have performance and scalability requirements, after all, if
performance is not an issue, why not use a sequential program? Ultimate performance
and linear scalability might not be necessary, but there is little use for a parallel program
that runs slower than its optimal sequential counterpart. And there really are cases
where every microsecond matters and every nanosecond is needed. Therefore, for
parallel programs, insufficient performance is just as much a bug as is incorrectness.

Quick Quiz 11.20: That is ridiculous!!! After all, isn’t getting the correct answer later than
one would like better than getting an incorrect answer??? Wl

Quick Quiz 11.21: But if you are going to put in all the hard work of parallelizing an
application, why not do it right? Why settle for anything less than optimal performance and
linear scalability?

Validating a parallel program must therfore include validating its performance. But
validating performance means having a workload to run and performance criteria with
which to evaluate the program at hand. These needs are often met by performance
benchmarks, which are discussed in the next section.

11.7.1 Benchmarking

Frequent abuse aside, benchmarks are both useful and heavily used, so it is not helpful
to be too dismissive of them. Benchmarks span the range from ad hoc test jigs to
international standards, but regardless of their level of formality, benchmarks serve four
major purposes:

1. Providing a fair framework for comparing competing implementations.

2. Focusing competitive energy on improving implementations in ways that matter to
users.

3. Serving as example uses of the implementations being benchmarked.

4. Serving as a marketing tool to highlight your software against your competitors’
offerings.

Of course, the only completely fair framework is the intended application itself. So
why would anyone who cared about fairness in benchmarking bother creating imperfect
benchmarks rather than simply using the application itself as the benchmark?

Running the actual application is in fact the best approach where it is practical.
Unfortunately, it is often impractical for the following reasons:

1. The application might be proprietary, and you might not have the right to run the
intended application.

2. The application might require more hardware than you have access to.

11.7. PERFORMANCE ESTIMATION 319

3. The application might use data that you cannot access, for example, due to privacy
regulations.

4. The application might take longer than is convenient to reproduce a performance
or scalability problem. '

Creating a benchmark that approximates the application can help overcome these
obstacles. A carefully constructed benchmark can help promote performance, scalability,
energy efficiency, and much else besides. However, be careful to avoid investing too
much into the benchmark effort. It is after all important to invest at least a little into the
application itself [Grad1].

11.7.2 Profiling

In many cases, a fairly small portion of your software is responsible for the majority of
the performance and scalability shortfall. However, developers are notoriously unable
to identify the actual bottlenecks by hand. For example, in the case of a kernel buffer
allocator, all attention focused on a search of a dense array which turned out to represent
only a few percent of the allocator’s execution time. An execution profile collected via a
logic analyzer focused attention on the cache misses that were actually responsible for
the majority of the problem [MS93].

An old-school but quite effective method of tracking down performance and scalability
bugs is to run your program under a debugger, then periodically interrupt it, recording
the stacks of all threads at each interruption. The theory here is that if something is
slowing down your program, it has to be visible in your threads’ executions.

That said, there are a number of tools that will usually do a much better job of helping
you to focus your attention where it will do the most good. Two popular choices are
gprof and perf. To use perf on a single-process program, prefix your command with
perf record, then after the command completes, type perf report. There is a lot
of work on tools for performance debugging of multi-threaded programs, which should
make this important job easier. Again, one good starting point is Brendan Gregg’s
blog.'®

11.7.3 Differential Profiling

Scalability problems will not necessarily be apparent unless you are running on very
large systems. However, it is sometimes possible to detect impending scalability
problems even when running on much smaller systems. One technique for doing this is
called differential profiling.

The idea is to run your workload under two different sets of conditions. For example,
you might run it on two CPUs, then run it again on four CPUs. You might instead
vary the load placed on the system, the number of network adapters, the number
of mass-storage devices, and so on. You then collect profiles of the two runs, and
mathematically combine corresponding profile measurements. For example, if your
main concern is scalability, you might take the ratio of corresponding measurements,
and then sort the ratios into descending numerical order. The prime scalability suspects
will then be sorted to the top of the list [McK95, McK99].

Some tools such as perf have built-in differential-profiling support.

15 Microbenchmarks can help, but please see Section 11.7.4.
16 http://www.brendangregg. com/blog/

http://www.brendangregg.com/blog/

320 CHAPTER 11. VALIDATION

11.7.4 Microbenchmarking

Microbenchmarking can be useful when deciding which algorithms or data structures
are worth incorporating into a larger body of software for deeper evaluation.

One common approach to microbenchmarking is to measure the time, run some
number of iterations of the code under test, then measure the time again. The difference
between the two times divided by the number of iterations gives the measured time
required to execute the code under test.

Unfortunately, this approach to measurement allows any number of errors to creep in,
including:

1. The measurement will include some of the overhead of the time measurement.
This source of error can be reduced to an arbitrarily small value by increasing the
number of iterations.

2. The first few iterations of the test might incur cache misses or (worse yet) page
faults that might inflate the measured value. This source of error can also be
reduced by increasing the number of iterations, or it can often be eliminated entirely
by running a few warm-up iterations before starting the measurement period. Most
systems have ways of detecting whether a given process incurred a page fault,
and you should make use of this to reject runs whose performance has been thus
impeded.

3. Some types of interference, for example, random memory errors, are so rare that
they can be dealt with by running a number of sets of iterations of the test. If the
level of interference was statistically significant, any performance outliers could be
rejected statistically.

4. Any iteration of the test might be interfered with by other activity on the system.
Sources of interference include other applications, system utilities and daemons,
device interrupts, firmware interrupts (including system management interrupts, or
SMIs), virtualization, memory errors, and much else besides. Assuming that these
sources of interference occur randomly, their effect can be minimized by reducing
the number of iterations.

5. Thermal throttling can understate scalability because increasing CPU activity
increases heat generation, and on systems without adequate cooling (most of
them!), this can result in the CPU frequency decreasing as the number of CPUs
increases.!” Of course, if you are testing an application to evaluate its expected
behavior when run in production, such thermal throttling is simply a fact of life.
Otherwise, if you are interested in theoretical scalability, use a system with adequate
cooling or reduce the CPU clock rate to a level that the cooling system can handle.

The first and fourth sources of interference provide conflicting advice, which is one
sign that we are living in the real world. The remainder of this section looks at ways of
resolving this conflict.

Quick Quiz 11.22: But what about other sources of error, for example, due to interactions
between caches and memory layout? W

The following sections discuss ways of dealing with these measurement errors, with
Section 11.7.5 covering isolation techniques that may be used to prevent some forms of

17 Systems with adequate cooling tend to look like gaming systems.

11.7. PERFORMANCE ESTIMATION 321

interference, and with Section 11.7.6 covering methods for detecting interference so as
to reject measurement data that might have been corrupted by that interference.

11.7.5 Isolation

The Linux kernel provides a number of ways to isolate a group of CPUs from outside
interference.

First, let’s look at interference by other processes, threads, and tasks. The POSIX
sched_setaffinity() system call may be used to move most tasks off of a given
set of CPUs and to confine your tests to that same group. The Linux-specific user-
level taskset command may be used for the same purpose, though both sched_
setaffinity() and taskset require elevated permissions. Linux-specific control
groups (cgroups) may be used for this same purpose. This approach can be quite
effective at reducing interference, and is sufficient in many cases. However, it does have
limitations, for example, it cannot do anything about the per-CPU kernel threads that
are often used for housekeeping tasks.

One way to avoid interference from per-CPU kernel threads is to run your test at
a high real-time priority, for example, by using the POSIX sched_setscheduler ()
system call. However, note that if you do this, you are implicitly taking on responsibility
for avoiding infinite loops, because otherwise your test will prevent part of the kernel
from functioning.'®

These approaches can greatly reduce, and perhaps even eliminate, interference from
processes, threads, and tasks. However, it does nothing to prevent interference from
device interrupts, at least in the absence of threaded interrupts. Linux allows some
control of threaded interrupts via the /proc/irq directory, which contains numerical
directories, one per interrupt vector. Each numerical directory contains smp_affinity
and smp_affinity_list. Given sufficient permissions, you can write a value to
these files to restrict interrupts to the specified set of CPUs. For example, “sudo
echo 3 > /proc/irq/23/smp_affinity” would confine interrupts on vector 23
to CPUs O and 1. The same results may be obtained via “sudo echo 0-1 >
/proc/irq/23/smp_affinity_list”. You canuse “cat /proc/interrupts”to
obtain a list of the interrupt vectors on your system, how many are handled by each
CPU, and what devices use each interrupt vector.

Running a similar command for all interrupt vectors on your system would confine
interrupts to CPUs 0 and 1, leaving the remaining CPUs free of interference. Or mostly
free of interference, anyway. It turns out that the scheduling-clock interrupt fires on
each CPU that is running in user mode.'® In addition you must take care to ensure that
the set of CPUs that you confine the interrupts to is capable of handling the load.

But this only handles processes and interrupts running in the same operating-system
instance as the test. Suppose that you are running the test in a guest OS that is itself
running on a hypervisor, for example, Linux running KVM? Although you can in theory
apply the same techniques at the hypervisor level that you can at the guest-OS level, it is
quite common for hypervisor-level operations to be restricted to authorized personnel.
In addition, none of these techniques work against firmware-level interference.

'8 This is an example of the Spiderman Principle: “With great power comes great
responsibility.”

19 Frederic Weisbecker leads up a NO_HZ_FULL adaptive-ticks project that allows
scheduling-clock interrupts to be disabled on CPUs that have only one runnable task.
As of 2019, this is nearly complete.

322 CHAPTER 11. VALIDATION

Listing 11.1: Using getrusage () to Detect Context Switches

| #include <sys/time.h>
2 #include <sys/resource.h>
3

4 /* Return O if test results should be rejected. */
5 int runtest(void)

6 {

7 struct rusage rul;

8 struct rusage ru2;

9

10 if (getrusage(RUSAGE_SELF, &rul) != 0) {
1 perror("getrusage") ;

12 abort();

13 }

14 /* run test here. */

15 if (getrusage(RUSAGE_SELF, &ru2 != 0) {
16 perror("getrusage") ;

17 abort();

18 }

19 return (rul.ru_nvcsw == ru2.ru_nvcsw &&
20 rul.runivcsw == ru2.runivcsw);

21 }

Quick Quiz 11.23: Wouldn’t the techniques suggested to isolate the code under test also affect
that code’s performance, particularly if it is running within a larger application? Wl

Of course, if it is in fact the interference that is producing the behavior of interest,
you will instead need to promote interference, in which case being unable to prevent it
is not a problem. But if you really do need interference-free measurements, then instead
of preventing the interference, you might need to detect the interference as described in
the next section.

11.7.6 Detecting Interference

If you cannot prevent interference, perhaps you can detect it and reject results from any
affected test runs. Section 11.7.6.1 describes methods of rejection involving additional
measurements, while Section 11.7.6.2 describes statistics-based rejection.

11.7.6.1 Detecting Interference Via Measurement

Many systems, including Linux, provide means for determining after the fact whether
some forms of interference have occurred. For example, process-based interference
results in context switches, which, on Linux-based systems, are visible in /proc/
<PID>/sched via the nr_switches field. Similarly, interrupt-based interference can
be detected via the /proc/interrupts file.

Opening and reading files is not the way to low overhead, and it is possible to get the
count of context switches for a given thread by using the getrusage () system call, as
shown in Listing 11.1. This same system call can be used to detect minor page faults
(ru_minflt) and major page faults (ru_majflt).

Unfortunately, detecting memory errors and firmware interference is quite system-
specific, as is the detection of interference due to virtualization. Although avoidance is
better than detection, and detection is better than statistics, there are times when one
must avail oneself of statistics, a topic addressed in the next section.

11.7. PERFORMANCE ESTIMATION 323

11.7.6.2 Detecting Interference Via Statistics

Any statistical analysis will be based on assumptions about the data, and performance
microbenchmarks often support the following assumptions:

1. Smaller measurements are more likely to be accurate than larger measurements.
2. The measurement uncertainty of good data is known.
3. A reasonable fraction of the test runs will result in good data.

The fact that smaller measurements are more likely to be accurate than larger
measurements suggests that sorting the measurements in increasing order is likely to be
productive.? The fact that the measurement uncertainty is known allows us to accept
measurements within this uncertainty of each other: If the effects of interference are
large compared to this uncertainty, this will ease rejection of bad data. Finally, the fact
that some fraction (for example, one third) can be assumed to be good allows us to
blindly accept the first portion of the sorted list, and this data can then be used to gain
an estimate of the natural variation of the measured data, over and above the assumed
measurement error.

The approach is to take the specified number of leading elements from the beginning
of the sorted list, and use these to estimate a typical inter-element delta, which in turn
may be multiplied by the number of elements in the list to obtain an upper bound on
permissible values. The algorithm then repeatedly considers the next element of the list.
If it falls below the upper bound, and if the distance between the next element and the
previous element is not too much greater than the average inter-element distance for the
portion of the list accepted thus far, then the next element is accepted and the process
repeats. Otherwise, the remainder of the list is rejected.

Listing 11.2 shows a simple sh/awk script implementing this notion. Input consists
of an x-value followed by an arbitrarily long list of y-values, and output consists of one
line for each input line, with fields as follows:

1. The x-value.
. The average of the selected data.
. The minimum of the selected data.

2
3
4. The maximum of the selected data.
5. The number of selected data items.
6

. The number of input data items.
This script takes three optional arguments as follows:

--divisor: Number of segments to divide the list into, for example, a divisor of four
means that the first quarter of the data elements will be assumed to be good. This
defaults to three.

--relerr: Relative measurement error. The script assumes that values that differ by
less than this error are for all intents and purposes equal. This defaults to 0.01,
which is equivalent to 1 %.

20 To paraphrase the old saying, “Sort first and ask questions later.”

324 CHAPTER 11. VALIDATION

Listing 11.2: Statistical Elimination of Interference
1 div=3

2 rel=0.01

3 tre=10

4 while test $# -gt O
5 do
6
7
8
9

case "$1" in

--divisor)
shift
div=$1

10 Y

11 --relerr)

12 shift
13 rel=$1
14 53

15 --trendbreak)
16 shift
17 tre=$1
18 Y

19 esac

20 shift

21 done

23 awk -v divisor=$div -v relerr=$rel -v trendbreak=$tre '{

24 for (i = 2; i <= NF; i++)

25 dli - 1] = $i;

26 asort(d);

27 i = int((NF + divisor - 1) / divisor);

28 delta = d[i] - d[1];

29 maxdelta = delta * divisor;

30 maxdeltal = delta + d[i] * relerr;

31 if (maxdeltal > maxdelta)

32 maxdelta = maxdeltal;

33 for (j =i+ 1; j < NF; j++) {

34 if (j <= 2)

35 maxdiff = d[NF - 1] - d[1];
36 else

37 maxdiff = trendbreak * (d[j - 11 - d[11) / (j - 2);
38 if (d[j] - d[1] > maxdelta && d[j] - d[j - 1] > maxdiff)
39 break;

40 }

41 n = sum = 0;

42 for (k = 1; k < j; k++) {

43 sum += d[k];

44 n++;

45 ¥

46 min = d[1];

47 max = d[j - 1];

48 avg = sum / n;

49 print $1, avg, min, max, n, NF - 1;

50 }!

--trendbreak: Ratio of inter-element spacing constituting a break in the trend of the
data. For example, if the average spacing in the data accepted so far is 1.5, then if
the trend-break ratio is 2.0, then if the next data value differs from the last one by
more than 3.0, this constitutes a break in the trend. (Unless of course, the relative
error is greater than 3.0, in which case the “break” will be ignored.)

Lines 1-3 of Listing 11.2 set the default values for the parameters, and lines 4-21 parse
any command-line overriding of these parameters. The awk invocation on line 23 sets
the values of the divisor, relerr, and trendbreak variables to their sh counterparts.
In the usual awk manner, lines 24-50 are executed on each input line. The loop spanning
lines 24 and 25 copies the input y-values to the d array, which line 26 sorts into increasing
order. Line 27 computes the number of trustworthy y-values by applying divisor and
rounding up.

11.8. SUMMARY 325

Figure 11.6: Choose Validation Methods Wisely

Lines 28-32 compute the maxdelta lower bound on the upper bound of y-values. To
this end, line 29 multiplies the difference in values over the trusted region of data by the
divisor, which projects the difference in values across the trusted region across the
entire set of y-values. However, this value might well be much smaller than the relative
error, so line 30 computes the absolute error (d[i] * relerr) and adds that to the
difference delta across the trusted portion of the data. Lines 31 and 32 then compute
the maximum of these two values.

Each pass through the loop spanning lines 33—40 attempts to add another data value to
the set of good data. Lines 34-39 compute the trend-break delta, with line 34 disabling
this limit if we don’t yet have enough values to compute a trend, and with line 37
multiplying trendbreak by the average difference between pairs of data values in the
good set. If line 38 determines that the candidate data value would exceed the lower
bound on the upper bound (maxdelta) and that the difference between the candidate
data value and its predecessor exceeds the trend-break difference (maxdiff), then
line 39 exits the loop: We have the full good set of data.

Lines 41-49 then compute and print statistics.

deviations, like we were taught in our statistics classes? W

Quick Quiz 11.24: This approach is just plain weird! Why not use means and standard ’

Quick Quiz 11.25: But what if all the y-values in the trusted group of data are exactly zero?
Won’t that cause the script to reject any non-zero value? Wl

Although statistical interference detection can be quite useful, it should be used only
as a last resort. It is far better to avoid interference in the first place (Section 11.7.5), or,
failing that, detecting interference via measurement (Section 11.7.6.1).

11.8 Summary

To err is human! Stop being human!!!

Ed Nofziger

Although validation never will be an exact science, much can be gained by taking
an organized approach to it, as an organized approach will help you choose the right
validation tools for your job, avoiding situations like the one fancifully depicted in
Figure 11.6.

326 CHAPTER 11. VALIDATION

A key choice is that of statistics. Although the methods described in this chapter work
very well most of the time, they do have their limitations. These limitations are inherent
because we are attempting to do something that is in general impossible, courtesy of the
Halting Problem [Tur37, Pul00]. Fortunately for us, there are a huge number of special
cases in which we can not only work out whether a given program will halt, but also
establish estimates for how long it will run before halting, as discussed in Section 11.7.
Furthermore, in cases where a given program might or might not work correctly, we can
often establish estimates for what fraction of the time it will work correctly, as discussed
in Section 11.6.

Nevertheless, unthinking reliance on these estimates is brave to the point of fool-
hardiness. After all, we are summarizing a huge mass of complexity in code and data
structures down to a single solitary number. Even though we can get away with such
bravery a surprisingly large fraction of the time, abstracting all that code and data away
will occasionally cause severe problems.

One possible problem is variability, where repeated runs might give wildly different
results. This is often dealt with by maintaining a standard deviation as well as a mean,
but the fact is that attempting to summarize the behavior of a large and complex program
with two numbers is almost as brave as summarizing its behavior with only one number.
In computer programming, the surprising thing is that use of the mean or the mean and
standard deviation are often sufficient, but there are no guarantees.

One cause of variation is confounding factors. For example, the CPU time consumed
by a linked-list search will depend on the length of the list. Averaging together runs
with wildly different list lengths will probably not be useful, and adding a standard
deviation to the mean will not be much better. The right thing to do would be control for
list length, either by holding the length constant or to measure CPU time as a function
of list length.

Of course, this advice assumes that you are aware of the confounding factors, and
Murphy says that you probably will not be. I have been involved in projects that had
confounding factors as diverse as air conditioners (which drew considerable power at
startup, thus causing the voltage supplied to the computer to momentarily drop too low,
sometimes resulting in failure), cache state (resulting in odd variations in performance),
I/0O errors (including disk errors, packet loss, and duplicate Ethernet MAC addresses),
and even porpoises (which could not resist playing with an array of transponders, which,
in the absence of porpoises, could be used for high-precision acoustic positioning and
navigation). And this is but one reason why a good night’s sleep is such an effective
debugging tool.

In short, validation always will require some measure of the behavior of the system.
Because this measure must be a severe summarization of the system, it can be misleading.
So as the saying goes, “Be careful. It is a real world out there.”

But what if you are working on the Linux kernel, which as of 2017 is estimated to
have more than 20 billion instances running throughout the world? In that case, a bug
that occurs once every million years on a single system will be encountered more than
50 times per day across the installed base. A test with a 50 % chance of encountering
this bug in a one-hour run would need to increase that bug’s probability of occurrence
by more than ten orders of magnitude, which poses a severe challenge to today’s testing
methodologies. One important tool that can sometimes be applied with good effect
to such situations is formal verification, the subject of the next chapter, and, more
speculatively, Section 17.4.

11.8. SUMMARY 327

The topic of choosing a validation plan, be it testing, formal verification, or both, is
taken up by Section 12.7.

328 CHAPTER 11. VALIDATION

Beware of bugs in the above code; I have only proved
it correct, not tried it.

Donald Knuth

Chapter 12

Formal Verification

Parallel algorithms can be hard to write, and even harder to debug. Testing, though
essential, is insufficient, as fatal race conditions can have extremely low probabilities
of occurrence. Proofs of correctness can be valuable, but in the end are just as prone
to human error as is the original algorithm. In addition, a proof of correctness cannot
be expected to find errors in your assumptions, shortcomings in the requirements,
misunderstandings of the underlying software or hardware primitives, or errors that you
did not think to construct a proof for. This means that formal methods can never replace
testing, however, formal methods are nevertheless a valuable addition to your validation
toolbox.

It would be very helpful to have a tool that could somehow locate all race conditions.
A number of such tools exist, for example, Section 12.1 provides an introduction to
the general-purpose state-space search tools Promela and Spin, Section 12.2 similarly
introduces the special-purpose ppcmem and cppmem tools, Section 12.3 looks at an
example axiomatic approach, Section 12.4 briefly overviews SAT solvers, Section 12.5
briefly overviews stateless model checkers, Section 12.6 sums up use of formal-
verification tools for verifying parallel algorithms, and finally Section 12.7 discusses
how to decide how much and what type of validation to apply to a given software project.

12.1 State-Space Search

Follow every byway / Every path you know.

“Climb Every Mountain”, Rodgers & Hammerstein

This section features the general-purpose Promela and Spin tools, which may be used
to carry out a full state-space search of many types of multi-threaded code. They are
also quite useful for verifying data communication protocols. Section 12.1.1 introduces
Promela and Spin, including a couple of warm-up exercises verifying both non-atomic
and atomic increment. Section 12.1.2 describes use of Promela, including example
command lines and a comparison of Promela syntax to that of C. Section 12.1.3 shows
how Promela may be used to verify locking, 12.1.4 uses Promela to verify an unusual
implementation of RCU named “QRCU”, and finally Section 12.1.5 applies Promela to
RCU’s dyntick-idle implementation.

329

330 CHAPTER 12. FORMAL VERIFICATION

12.1.1 Promela and Spin

Promela is a language designed to help verify protocols, but which can also be used to
verify small parallel algorithms. You recode your algorithm and correctness constraints
in the C-like language Promela, and then use Spin to translate it into a C program that
you can compile and run. The resulting program conducts a full state-space search of
your algorithm, either verifying or finding counter-examples for assertions that you can
include in your Promela program.

This full-state search can be extremely powerful, but can also be a two-edged sword.
If your algorithm is too complex or your Promela implementation is careless, there
might be more states than fit in memory. Furthermore, even given sufficient memory, the
state-space search might well run for longer than the expected lifetime of the universe.
Therefore, use this tool for compact but complex parallel algorithms. Attempts to
naively apply it to even moderate-scale algorithms (let alone the full Linux kernel) will
end badly.

Promela and Spin may be downloaded from http://spinroot.com/spin/
whatispin.html.

The above site also gives links to Gerard Holzmann’s excellent book [Hol03]
on Promela and Spin, as well as searchable online references starting at: http:
//www.spinroot.com/spin/Man/index.html.

The remainder of this section describes how to use Promela to debug parallel
algorithms, starting with simple examples and progressing to more complex uses.

12.1.1.1 Promela Warm-Up: Non-Atomic Increment

Listing 12.1 demonstrates the textbook race condition resulting from non-atomic
increment. Line 1 defines the number of processes to run (we will vary this to see the
effect on state space), line 3 defines the counter, and line 4 is used to implement the
assertion that appears on lines 29-39.

Lines 6-13 define a process that increments the counter non-atomically. The argument
me is the process number, set by the initialization block later in the code. Because
simple Promela statements are each assumed atomic, we must break the increment into
the two statements on lines 10—-11. The assignment on line 12 marks the process’s
completion. Because the Spin system will fully search the state space, inclu